All Posts tagged muscle

Chiropractic & Sports Medicine

Five of the most powerful tools to target muscle pain and scar tissue adhesions related to sports injury (injuries) are the

Rapid Release device
Deep Muscle Stimulator (DMS)
EnPuls – Radial Shock Wave Therapy
Piezowave – Acoustic Shock Wave Therapy
Laser Therapy
Between my hands for the Chiropractic evaluation and these tools we can release painful adhesions, tight muscles, stiff joints and help chronic pain.

 

More

Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men

Nicholas A. Burd1, Daniel W. D. West1, Aaron W. Staples1, Philip J. Atherton2, Jeff M. Baker1, Daniel R. Moore1, Andrew M. Holwerda1, Gianni Parise1,3, Michael J. Rennie2, Steven K. Baker4, Stuart M. Phillips1*

1 Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada, 2 School of Graduate Entry Medicine and Health, City Hospital, University of Nottingham, Derby, United Kingdom, 3 Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, 4 Department of Neurology, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada

Background

We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression.

Methodology/Principal Findings

Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition.

Conclusions/Significance

These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes.

More

Healthy Food Choices

EGGS: The protein found in eggs has the highest “biological value” of protein — a measure of how well it supports your body’s protein need — of any food. In other words, the protein in eggs is more effective at building muscle than protein from other sources, even milk and beef. Eggs also contain vitamin B12, which is necessary for fat breakdown. Even during all those years eggs were considered bad for you, I never saw it that way. Eating an egg or two a day will not raise your cholesterol levels.

BERRIES: Berries carry powerful levels of antioxidants: all-purpose compounds that help your body fight heart disease and cancer. The berries’ flavonoids may also help your eyesight, balance, coordination, and short-term memory. During the summer months plan on eating a cup of raspberries or blueberries a day. One cup has about 6 grams of fiber and more than half of your daily requirement of vitamin C.

BEANS & LEGUMES: Pick whichever you like – Black, lima, pinto, navy. They are good protein, fiber and iorn sources, and low in fat. When people think of fiber they forget to think of beans as a great source.
Researchers in Australia, Indonesia, and Sweden studied the diets of 400 elderly men and women, and found that those who ate the most leafy green vegetables and beans had the fewest wrinkles.

SPINACH & OTHER GREEN VEGES: These foods have high nutrient content — especially vitamins A, C, and K; folate; beta-carotene; minerals including calcium and magnesium; fiber; and antioxidants. They have antioxidants and fiber that helps fill you up without loading you up with calories.
Snack on more vegetables – period!

TURKEY: Turkey breast is one of the leanest meats you’ll pick, and it packs nearly one-third of your daily requirements of niacin and vitamin B6. Dark meat, if you prefer, has lots of zinc and iron.

PEANUT BUTTER: I know it’s high in calories but it has heart-healthy monounsaturated fats. For guys that means it can increase your body’s production of testosterone, which can help your muscles grow and your fat melt.
Avoid “classic” peanut butters such as Jif and Skippy – they have added sugar and trans fats. Purchase all-natural butters with one ingredient: peanuts.

EXTRA PROTEIN POWDER: I add BioPureProtein from Metagenics to my protein smoothie shakes. In conjunction with my UltraMeal powder (Metagenics) or FitFood (Xymogen), it is a total meal replacement. I’ll say it again, the most powerful fat-burning meal is high in protein and low in carbs. The UltraMeal powder and the BioPureProtein shakes are high-quality protein that contains essential amino acids that build muscle and burn fat. It’s simple, it has the highest amount of protein for the fewest number of calories.

More

Muscle Activation Concepts

by Jeffrey H. Tucker, DC, DACRB

Judith is a 59-year-old female who consistently comes to my twice-weekly exercise classes. I train and teach clients in everything from low-load exercises to multiplanar lunges; from bands to balance training; from exercise sticks to Swiss balls; and from plyos to kettlebells.

Jude, as I affectionately like to call her, also occasionally chooses to come to my office for a session when she is in pain. Her usual areas of discomfort are in the upper back/lower neck area or the lumbopelvic region. Jude also comes to see me when she feels like she is “off” regarding her posture or her workouts. Sometimes she comes to me because something in her workout hurts her, or because she notices after sitting for long periods during the day (hunched over a computer) or in a vehicle, that she has become really stiff and tight. On this particular day, it was Jude’s lumbopelvic region that bothered her.

Jude is no ordinary lady. She is health conscious, a savvy business woman, a smart consumer, and appreciates that specialization of treatment for care is the key to progress. Jude likes what I have to offer (and is willing to pay out of pocket): small-group exercise classes, diet and nutrition recommendations, soft-tissue and joint-therapy choices, cutting-edge knowledge and experience.

I have taught Jude how to use the foam roll for self myofascial release, how and what muscles to stretch for her overactive muscles, and drilled technical proficiency in all of her exercises. So I was surprised when Jude presented to my office and I discovered she had the same tightness in her calves and hamstrings (biceps femoris) that I noticed in her previous treatment three months earlier. I thought I had given her the recipe for relief on the prior visit: daily use of the foam roll at home, stretching, specific low-load exercises, and continuation of my exercise class, in which I have been teaching kettlebell training (high-load, whole-body exercises).

If I could interview the calf and hamstring muscles what would they say? Why was Jude experiencing overactive calf and hamstring muscles despite the fact that she told me she was using the foam roll, and stretching her calves and hamstrings. I was certain she was doing whole-body exercises because I was there to instruct her.

The “muscle whisperer” in me knew something was wrong or missing here. I did a checkup of her feet and gait analysis. Nothing obvious jumped out at me. I had her perform the “arms overhead” squat test. This movement observation revealed the feet turning outward very slightly as she descended into the squat. The second toe had moved outward about 20 degrees from a line drawn straight down from the center of the tibia. I also observed the heels rise during the squat decent. The “arms overhead” squat evaluation confirmed overactivity of the soleus and gastrocnemius muscles.

I also observed that her low back was rounding very slightly when she performed the “arms overhead” squat. This indicates overactivity of the hamstrings, especially of biceps femoris muscle.

Why were her same muscles still tight? I was concerned because I know that if your calves or hamstrings are in the “on” position all the time (meaning they don’t know when to lengthen) and they don’t allow the ankles to dorsiflex, or the hips to hinge properly, you will bend from the back instead, and eventually develop other compensations that lead to discomfort, pain or injury. Jude was paying me to figure this stuff out and help keep her injury free.

I reviewed the corrective exercise treatment strategy equation:

  • Inhibit the overactive muscles.
  • Lengthen the overactive muscles.
  • Isolate and activate the underactive muscles.
  • Perform whole-body integrated exercises.

For the inhibition part of the equation, muscles can to be treated using foam roll, ischemic compression, instrument-assisted soft-tissue techniques, deep muscle stimulator or any other technique. For each muscle that requires inhibition and lengthening, there is often an opposing muscle that needs specific low-load isolated exercises to activate it. Activation refers to the stimulation (or re-education) of underactive myofascial tissue.

Here lies the explanation for what I did that made a change in Judith’s recurrent muscle overactivity: Not all muscles have a clear singular role. But all muscles have both slow (tonic) and fast (phasic) motor units. Certain muscles are more tonic and respond to too much loading or too much inactivity by getting and staying shorter. The National Academy of Sports Medicine (NASM) refers to this condition as “overactive.” Examples of tonic muscles are the hamstrings, the adductors and the hip flexors. The phasic muscles such as the middle/lower trapezius, gluteus medius and anterior tibialis are prone to getting weak and stretched out with too much or too little use. The NASM calls these muscles “underactive.” Altered muscle lengths go back to the length-tension relationship.

If the calves (soleus, gastrocnemius) are overactive, it is likely that their functional antagonist muscles (posterior tibialis) are underactive. If the biceps femoris are overactive, it is likely that the gluteus maximus/minimus is underactive.

Judith was doing everything right except she was missing one important part of the equation. A corrective exercise program that stretches the short muscle, such as the hamstring, does not concurrently shorten the lengthened muscle, such as the lumbar back extensors. Corrective exercise therapy needs to shorten the elongated muscle while simultaneously stretching the short muscle.

The keys to preventing and alleviating spinal dysfunction are: have the trunk muscles hold the vertebral column and pelvis in their optimal alignments; and prevent unnecessary movement. To achieve these goals, the muscles must be the correct length and strength and be able to produce the correct pattern of activity. The new treatment plan for Jude was to perform everything she was doing, with the addition of the following:

  • specific exercises to isolate the anterior/posterior tibialis muscles;
  • low-load exercise retraining the hip extension pattern;
  • single-leg Romanian dead lifts for the gluteus maximus/minimus muscles; and
  • prisoner squats for ankle mobility, calf lengthening, hip flexion, and gluteal strength.
  • After only three weeks of care, Jude showed tremendous improvement.

References

  1. Comerford M. Lumbo-Pelvic Stability. Course notes.
  2. National Academy of Sports Medicine. Corrective Exercise Specialist. Course notes.
More