All Posts tagged hip assessments

Advanced Functional Exercises For the Hips and Low Back

by Jeffrey H. Tucker, DC, DACRB

*This article was submitted to DC on 1-20-07. Accepted for publication 2-27-07. Printed May 2007.

Movement assessments have become a clear and comprehensive evaluation and approach to my Chiropractic therapy. It begins with me looking at each clients standing posture. I then ask my client to perform a series of postures. You know this portion as ‘range of motion’ evaluation. For example, I say to the client, “Bring your chin to your chest”, etc., or “bend forward to touch your fingers to the floor” or “raise both arms over your head” bla bla bla! It is old school, but I realize I need to document how far they move and if any sensations present themselves. I have become a keen observer of these movements, one who is not just interested in how far they move, but more interested in the way they move and what there movement pattern can tell me. The evaluation continues with a series of dynamic and static postures to observe how the muscles and joints move. Through this process I generate a sequence of home exercise programs for my clients. Please realize, the movement assessments can be performed prior to any hands on work that you do, or the assessments can conclude with a mobilization or manipulation that you feel is necessary.

If you have read my previous articles you will know that I start with the squat assessment. Observe the client perform a squat several times. Simple say “Let me see you do a squat with your arms out in front of you.” The benchmarks that I look for on this evaluation are that the:

  1. Upper torso is parallel with the tibia or toward vertical (back is relatively upright).
  2. Femur below horizontal.
  3. Knees aligned over feet.
  4. Toes point forward.
  5. Knees don’t turn in.

If they cannot accomplish the above criteria I start the correction process with the following training: I call this the supine120 degree knee to chest maneuver. Client lays supine in the 90/90 position. The knees are over the hips and the legs are parallel to the floor. Doctor stands at the feet of the client and uses a knife edge contact along the clients ankle crease. The Doctor resists at the ankle crease while the client is instructed to “pull your knees to your chest.” The Doctor allows the client to move into a knee to chest position. The doctor is providing resistance, not overpowering the client. The client’s lumbar region should remain in the neutral spine. Instruct the client to focus using the lower abdominals, especially the area slightly above and below the inguinal region. Allow the hips to get to at least 120 degrees. This maneuver is a great way to get clients to re-awaken this area. Bring awareness of tightness to this area while you tell the client to release tension or resistance in other areas such as the neck or shoulders that are not needed for this maneuver. Repeat this maneuver as many times to client tolerance.

The next progression is a pose called ‘Find your stance’. This is used as a foundation of all standing postures and movements. I want this to become the natural way to stand. It cultivates a sense of strength and stability. Begin with your feet (shoes off) between your hips and shoulders – go with what feels natural and comfortable. Slightly angle your feet outwards with your weight evenly spread through the balls, lateral edge and heel. Avoid your arches collapsing inwards. Try to feel the medial and longitudinal arches lift up.

Assisted Squats: Doctor and client face each other. ‘Find your stance’, or spread feet to shoulder width or slightly wider if needed; client holds arms and hands out in front of there body; Doctor holds hands with client and assists client to squat. The command is “pull your butt down.” The Doctor is providing assistance so the client doesn’t fall down. However, the client may fall to the floor the first or second time and that is perfectly normal and O.K. to do. Simple get back up and attempt it again. The idea is to allow them to go as deep as possible. Get the client to engage the groin crease muscles to pull them down. The goal of doing this squat is to reach back with the buttocks and down, ex. Sit back on a chair with control. If you have a rope or Theraband (at least the strength of a black theraband), you can wrap it around the clients back and underarms while you hold the ends in the front of the client and ask then to “sit down against” that resistance. Doctor coaches the client to keep the back straight, in this case as vertical as possible. FIGURE 1 Rubber tubing under the arm pits and you assist client to sit down against this resistance. The knee should not bow inward.

“Pull the hips out of the socket” routine to squat. This maneuver requires two assistant partners (the doctor plus an assistant). The client is instructed to squat down in a wider than shoulder stance. The Doctor is to the left of the client and the assistant on the right side. Each assistant places one flat hand behind the posterior leg just below the knee crease. The other hand is placed in the inguinal fossa/ligament crease with a knife edge contact. Assistants use enough pressure to guide the client into a deeper squat. Ask the client to feel like they are pulling the hips out of the socket as they descend. This allows the client to understand and feel the proper joints and muscles to use to accomplish this squat. Allow the client to learn in a wide stance and go as low as they can. As they improve strength they can get into a more narrow stance. Less core muscle is required in a wide stance than a narrow stance. Repeat this maneuver several times. Do a simple test on yourself. Stand in a wide stance and go narrower and narrower until you are in a one legged stance. Feel how the core is participating. Eventually we will get clients to have there feet closer and closer together and this will demand greater core strength.

Right after this maneuver, it will help your client if the Doctor rubs his/her index fingers along the spinous processes while the client does several more squats. This is performed starting at approximately the middle of the back with both index fingers. At the same time rub one finger headward and the other caudal along the spinous process while the client squats down and up. While you rub the spine, instruct the client to stay in a “tall spine” posture. They need to imagine creating more room in the hip socket. Tell the client to think of one thing and only one thing on the way up and that is “gluteals.” You don’t need to suck the stomach in if you elongate the spine, it will automatically come in if they are working to resist extension.

Squat against the wall. This is such a new take on the old school method of a wall squat. Once a person can accomplish the “static wall squat” also known as the “wall sit”, “wall chair,” “airbench” or “back against the ball squat” for one minute, they are ready for this maneuver. Find the distance away from the wall so that when you squat down your sacrum stays in contact with the wall. The key is to keep the sacrum touching the wall. Squat down with arms on the inside of the thighs until the elbows can push against the inner thighs. Put your hands in a prayer pose and push the elbows against the inner thighs. Pry the hips apart as you wiggle side to side going lower and lower. Continue this gentle rocking side to side and attempt to go lower and lower opening the hips. You should feel this in the most proximal attachments of the adductor muscles and hamstrings. Hold this pose for as long as you can and then concentrate on getting back up using the gluteals and keeping the sacrum in contact with the wall. Try this maneuver several times. One minute in this pose really gets you feeling warm. Attempt this with a narrow stance compared to when you are away from the wall. The next progression is to repeat the squat away from the wall.

PIVOTS: These help open the hips. Standing with your feet more than 3 feet apart, with outstretched arms (abduction) to your sides away from the body (the feet should be under the wrists distance). The feet will need to be angled slightly outward approximately 15 degrees. Keep the torso facing forward. Lunge gentle to the left until your knee is bent in a right angle above your left foot. Lengthen the spine upward (“tall spine” concept). Move side to side going more and more lateral (lower). The opposing forces of your legs provide balanced stability. Don’t lean the body towards the bent knee, try to keep the torso upright as much as possible. Imagine the hands pulling further side to side. Allow the sitting bone to be pulled backwards. The legs, both pushing forwards and pulling backwards, allow the hip to hinge and become stable at the same time, two opposing forces balancing one another. Shoulder blades should be kept down.

I recommend clients practice these maneuvers daily. I want my clients to observe subtle changes in posture, decreased pain, increased range of motion, feelings of stability, and a greater capacity for work and sport. As individuals vary in strength, flexibility, and coordination so the practice of functional exercises will be unique to each individual. Using progressive movement as assessments in your practice will tell you where the client is strong or weak, symmetrical or asymmetrical, balanced or imbalanced, coordinated or incoordinated, and which areas need more practice.


  1. Bergmark A 1989 Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia 230(60):20-24.
  2. Caterisano A, Moss RF, Pellinger TK, Woodruff K, Lewis VC, Booth W, Khadra T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J Strength Cond Res 2002 Aug; 16(30: 428-32
  3. Comerford M 2003 and 2006 Lumbo-pelvic Stability. Course notes. Copyright Comerford.
  4. Tsatsouline, Pavel 2007 Stretch Course. Copyright Tsatsouline.
  5. Vermeil A 2005 Sports & Fitness. Course notes. Copyright Vermeil.
  6. All the coaches, sports medicine, and sports scientists who have shared their knowledge with me.

Functional Evaluation of the Hips, Part 1

by Jeffrey H. Tucker, DC, DACRB

This article explains the importance and purpose of measuring medial and lateral rotation of the hips with the patient in the prone position. Insufficient hip rotation control can cause local hip pain, a pain-producing compensation in the lumbopelvic region or the knees. The ideal range of medial hip rotation motion is approximately 35 degrees (without pelvic rotation). The ideal range of lateral hip rotation is approximately 35 degrees from neutral without pelvic motion.1

I am not as interested in the exact number of degrees of rotation as I am interested in testing for excessive or decreased degrees of the range of rotation. In Shirley Sahrmann’s book Diagnosis and Treatment of Movement Impairment Syndromes, she notes less than 30 degrees of lateral or medial rotation is movement impairment. I am also looking for symmetry or asymmetry of these movements. Evaluating excessive motion and/or decreased range of movement will provide information about the quality of movement at the hips. This is sometimes referred to as neuromotor control or movement coordination.

This evaluation will add another piece of the puzzle to understanding the biomechanics of the lower extremities during physical activities such as gait. It has been my experience that altered movement patterns in the hips may result in alterations of the load distribution across the patellofemoral joint2,3,4 and lumbosacral region,5 causing pain and dysfunction in these areas.

Gathering information about movements is part of a functional examination. Poor quality or altered movement patterns are usually more easily detected when we break down a component of the overall movement (e.g., gait). Recognizing poor hip rotation in the prone position may be easier than recognizing a faulty gait pattern during physical activities. Measuring the hips in a supine position with the hips flexed 90 degrees does not seem as functional as measuring the hips in a prone position with the knees together.


The patient should be in the prone position on a flat table. Stand to the contralateral side of the table, to the side of the hip being examined (stand on the left side of the patient while testing the right hip). Grasp the patient’s foot and passively bend (flex) the knee to 90 degrees. Make sure the knees are together and the thigh is in the neutral position. Slowly move the foot away from you, causing medial rotation of the hip. Evaluate how far the hip moves without moving the pelvis. Is it more than 35 degrees? Is it less than 30-35 degrees? Slowly move the foot toward your body, producing lateral rotation of the hip. Is it more than 35 degrees? Is it less than 30-35 degrees?


Excessive medial rotation of the hip (common): This indicates poor stability (ability to maintain a stabile core and move the extremities) function or excessive length of the hip joint capsule and the lateral rotator stability muscles, posterior gluteus medius and intrinsic hip lateral rotators (piriformis, gemellus superior, obturator internus, gemellus inferior, obturator externus, quadratus femoris).

The gluteus medius arise from the outer surface of the ilium, anterior to the TFL. The muscle converges to form a tendon that attaches to the lateral surface of the greater trochanter. The gluteus medius has fibers that attach forward and posterior of the greater trochanter. The posterior border of the gluteus medius may blend with the piriformis. Together with the glute minimus, the glute medius abducts and medially rotates the hip joint.

Therefore, if the G med is not firing properly, there will be excessive medial rotation at the hip. The glute minimus and medius are fundamental in keeping the trunk in an upright position when the contralateral foot is raised during walking. The hip joint capsule surrounds the acetabulum and neck of the femur. A number of ligament bands help keep the femur and acetabulum in check. The capsule can get tight or become loose.

Excessive lateral rotation of the hip: This indicates either poor stability function or excessive length of the medial rotator stability muscles (anterior gluteus medius and minimus).

Decreased lateral rotation of the hip (common): This includes shortening of capsule and shortening of myofascial structures (TFL/ITB). To differentiate between capsule or TFL, examine the end feel. Take the leg into abduction by 1 inch and if decreased restriction occurs, the TFL/ITB is limiting the movement. If there is no change, the capsule is causing the decreased lateral rotation.

The tensor fascia lata arises from the anterior part of the outer lip of the iliac crest, the lateral aspect of the anterior superior iliac spine and the upper part of the anterior border of the iliac wing. You should keep in mind that in addition to arising from the iliac crest, the iliotibial band (ITB) attaches into the posterior gluteus maximus muscle in the back. The gluteus maximus through the ITB also attaches on the tibia distally.

This is an important point to remember because the TFL/ITB muscle is producing movement of both the proximal and distal aspects of the thigh, which reinforces the maintenance of a relatively constant position of the femoral head in the acetabulum during hip extension. The TFL assists in the flexion, abduction and medial rotation of the hip joint and extension of the knee joint. Use specific muscle length tests to confirm myofascial shortening.

Decreased medial rotation of the hip: This includes shortening of the capsule and myofascial structures (piriformis or superficial fibers of gluteus maximus). The superficial fibers of the gluteus maximus attach proximally to four structures: the thoracolumbar fascia, the iliac crest, the sacrum and the coccyx. They travel distally to the deep part of the muscle and end in a tendinous sheet, which passes lateral to the greater trochanter and is attached to the iliotibial tract of the fascia lata. The iliotibial tract runs down the anterior lateral side of the thigh. It blends with the capsule of the knee joint to attach to Gerdy’s tubercle, the lateral condyle of the tibia and the head of the fibula. Again, poor control at the hip does cause knee dysfunction.

The piriformis arises from the anterior aspect of the second to fourth segment of the sacrum between and lateral to the sacral foramina. Its tendon is attached to the upper border and medial aspect of the greater trochanter. The piriformis laterally rotates the extended hip joint and abducts the flexed hip joint. Differentiate by end feel. Assess specific muscle-length tests to confirm myofascial shortening.

When the glute maximus and piriformis are the dominant muscles producing hip extension, their proximal attachments provide more optimal control of the femur in the acetabulum than do the hamstring muscles. If the attachments of the piriformis and glute maximus muscles are overactive at the femur, they will not provide proper control of the proximal femur during hip extension.


  1. Van Dillen LR, Sahrmann SA, Norton BJ et al. Reliability of physical examination items used for classification of patients with low back pain. Phys Ther 19998;78:979.
  2. Brody LT, Thein JM. Nonoperative treatment for patellofemoral pain. J Orthop Sports Phys Ther 1998;28:336-44.
  3. Witvrouw E, Lysens R, Bellemans J, Cambier D, Vanderstraeten G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. A two-year prospective study. Am J Sports Med 2000;28:480-9.
  4. Cesarelli M, Bifulco P, Bracale M. Study of the control strategy of the quadriceps muscles in anterior knee pain. IEEE Trans Rehabil Eng 2000;8:330-41.
  5. Fredericson M, Cookingham CL, Chaudhari AM, Dowdell BC, Oestreicher N, Sahrmann SA. Hip abductor weakness in distance runners with iliotibial band syndrome. Clin J Sport Med 2000;10:169-75.

Part 2 of this article, will focus on specific corrective exercises for the hip.