All posts in Posture

Posture & Low Load Exercises

Scapular Retraction

Lie with your upper arms straight out to the sides, elbows bent 90°. Pinch shoulder blades together and raise arms level with floor. Keep shoulders down.

Hold for 2 breaths.
Repeat 20 times per set.
Three sets per session.
Complete 1 session per day.

March

Tighten stomach and slowly raise right leg and lower opposite arm over head. Keep trunk rigid, back flat and hips level.

Hold for 2 breaths.
Repeat 20 times per side, per set.
Two sets per session.
Complete 1 session per day.

One Leg Bridging

With legs bent, lift buttocks so hips are level and elevated. Then slowly extend one leg; keep thighs level and stomach tight.

Hold for 30 seconds.
Repeat 2 times per set.
Two sets per session.
Complete 1 session per day.

Lower Abs

Bend both knees, feet together on floor and stomach tight. Slowly lower one knee to the side and return.

Repeat 50 times per side, per set.
One set per session.
Complete 1 session per day.

More

Office Stretches

One Arm Overhead Reach

Slide arm up wall, with thumb pointed toward opposite wall; lean thru a doorway while simultaneously reaching up to the sky.

Hold for 30 seconds.
Repeat 2 times per side, per set.
Two sets per session.
Complete 1 session per day.

Forearm Stretch

With palms resting comfortably on a table, gently lean forward over hands. Repeat with fingers pointing toward body.

Hold for 30 seconds.
Repeat 2 times per side, per set.
One set per session.
Complete as often as needed per day.

Elbow Flexion Stretch

Bring arm over head and bend elbow as far as possible. Grasp wrist with other hand and gently pull downward. Be sure not to pull neck forward and keep back straight.

Hold for 30 seconds.
Repeat 2 times per set.
One set per session.
Complete as often as needed per day.

Backward Bend (Standing)

Arch back to make hollow of back deeper. Place hands on small of back. Go back as far as possible with no discomfort.

Hold for 2 breaths.
Repeat 10 times per side, per set.
One set per session.
Complete as often as needed per day.

More

Improve Balance Exercises

Arch Up (Prone)

Lying on your stomach with hands along your side, palms facing up. Lift head and torso off the floor as high as possible and look up toward the ceiling. After holding for two breaths rotate head so looking toward the floor again and release the pose.

Hold for 2 breaths.
Repeat 10 times per session.
Two sets per session.
Complete 1 session per day.

Opposite Arm/Opposite Leg (On All Fours)

Tighten stomach and raise right leg and opposite arm. Keep hips level and stomach very tight and drawn in.

Hold for two breaths.
Repeat 20 times per side, per set.
One set per session.
Complete 1 session per day.

Thoracic Extensions

With or without weights, raise both arms in the “I” position, “Y”position and “T” position.

Repeat 10 times per set.
Two sets per session.
Complete 1 session per day.

Deep Squat

Stand with feet shoulder/hip width apart. Squat deeply trying to keep heels on the floor. Keep head and chest up.

Build up to 50 squats per set.
One set per session.
Complete 1 session per day.

More

Posture Chiropractor

Arch Up (Prone)

Lying on your stomach with hands along your side, palms facing up. Lift head and torso off the floor as high as possible and look up toward the ceiling. After holding for two breaths rotate head so looking toward the floor again and release the pose.

Hold for 2 breaths.
Repeat 10 times per session.
Two sets per session.
Complete 1 session per day.

Opposite Arm/Opposite Leg (On All Fours)

Tighten stomach and raise right leg and opposite arm. Keep hips level and stomach very tight and drawn in.

Hold for two breaths.
Repeat 20 times per side, per set.
One set per session.
Complete 1 session per day.

Thoracic Extensions

With or without weights, raise both arms in the “I” position, “Y”position and “T” position.

Repeat 10 times per set.
Two sets per session.
Complete 1 session per day.

Deep Squat

Stand with feet shoulder/hip width apart. Squat deeply trying to keep heels on the floor. Keep head and chest up.

Build up to 50 squats per set.
One set per session.
Complete 1 session per day.

More

Squats: A Functional Assessment of Movement

by Jeffrey H. Tucker, DC, DACRB

Editor’s note: The following article expands upon concepts introduced in “Overhead Deep Squats: Understanding Movement and Function,” which appeared in the Sept. 28, 2006 issue of DC.

What do you do when your patient with musculoskeletal pain gets 80 percent better and progress seems to be stalled? What’s missing to help this patient gain further progress and relief? The answer is in the human movement system. What information are we missing that will allow us to evaluate the human movement system? We can look at how the kinetic chain operates as an integrated functional unit. We need to take a closer look at what our muscles do when we move in everyday life. Functional movements are multidimensional and multiplanar in nature. I find that the deep overhead squat is a useful functional biomechanical analysis.

Current concepts in human movement science provide a useful framework to classify muscle function. We have two distinct yet interdependent muscle systems: the stabilization system (stabilizers or local muscles) and the movement system (mobilizers or global muscles). The local and global muscle systems must integrate for efficient, normal function. Neither system in isolation can control the functional stability of body motion segments. In the presence of chronic or recurrent musculoskeletal pain, patients employ strategies or patterns of muscle recruitment that are normally reserved for high-load function. Pain and pathology do not have to be present concurrently with local muscle dysfunction.

In the presence of pathology and/or pain, a variety of different dysfunctions may present (related to the weak link) in an individual’s integrated stability system. Identifying the dysfunction is a priority of treatment. Musculoskeletal pathology can heal and the symptoms may subside; however, the dysfunction does not always automatically return to a normal baseline. The clinical challenge is how to identify the weak link. Commonly accepted methods of identifying the weak link include posture analysis, gait analysis, flexibility assessment, neuromuscular assessment, single-leg balance excursion, multiplanar lunge test, multiplanar step-up test, push-up test, multiplanar vertical jump/hop, multiplanar horizontal jump/hop, shark skill test, multiplanar cone jump/hop test, and speed tests. Other functional tests to assess core stability, strength, and sequencing include the hurdle step and the wall sit with overhead reach. We can divide these assessments for stability and sequencing into static tests, such as drawing-in maneuvers, plank postures, and holding postures in different planes; and dynamic tests, such as Janda’s movement patterns. The important thing is to not take out the static tests, but to add dynamic testing to understand the human movement system!

As mentioned in my previous article, the overhead deep squat is a valuable dynamic assessment and exercise. If you wish to exercise the glutes, a full-depth squat is highly recommended. I start my evaluation by saying to the patient, “Just do a squat for me” or “Squat down for me.” Observe the patient’s natural or normal pattern of movement. Note the feet, knees, hips (lumbar spine), shoulders and the head while the patient performs the squat. After I observe several squats, I ask the patient to squat down while holding the dowel or a barbell over their head. Both elbows should be in the extended position.

To reiterate, the ideal criteria for a well-performed overhead deep squat are as follows:

  1. upper torso parallel with the tibia or toward vertical;
  2. femur below horizontal;
  3. knees aligned over feet;
  4. dowel aligned over feet;
  5. toes pointed forward;
  6. knees not turned in or out.

Observe: The foot turns outward (externally rotates) while the patient descends. Relate: This implicates a short soleus and gastrocnemius; and long posterior tibialis and medial gastrocnemius. Assess: If the there is excessive outward foot rotation and the hip adducts and/or internally rotates during the descent and/or ascent, this indicates restricted adductors. Rehab solution: Mobilize the external hip rotators; have the patient squat with a spacer between the knees. Place a foam roll or a ball between the patient’s knees and have them squeeze the object as they squat. The size of the ball or roll should place the knees approximately shoulder-width apart.

The question often comes up, “Should the knees go over the toes?” The answer is not that it is necessarily wrong, but that it tends to be the way weak people squat. Weak people will exhaust ankle range of motion first and then begin to flex the knee. This results in excessive knee angles or hitting 90 degrees sooner. Think 4:1 knee-to-ankle movement: 4 degrees of knee movement for every 1 degree of ankle movement. If a patient experiences knee pain while doing a squat, they do not necessarily have to be discouraged from performing them. Teach the movement so they are doing the proper technique, loading the correct muscles and joints and not overloading the knees.

The rehab regression for knee pain while squatting is to perform the “airbench” exercise. Have the patient stand against a wall with their feet facing straight ahead; their hips, upper back and head should be against the wall. The patient should walk their feet away from the wall approximately one foot-length; bend their knees and start sliding down the wall until the knees cover the toes as they look down at their feet. Instruct the patient to hold this position and lift the toes upward to keep the weight in their heels; the lower back should be flush up against the wall. Make sure they hold this pose for one to two minutes.

If you have a patient whose chief complaint is low back pain, yet they can do the deep overhead squat and achieve the benchmark of having the upper torso parallel with the tibia or toward the vertical and the femur below horizontal – but the foot flattens, turns outward and the hip abducts – they must stretch the gastrocsoleus complex for improvement within the kinetic chain. This patient can use the overhead deep squat as therapy to correct the tightness in the calf. For rehab, have the patient perform squats with a 1- to 2-inch board under the heels while squatting. Gradually (over many weeks) lower the board until the patient can achieve the benchmark of keeping the feet flat on the ground. Squat repetitions will stretch the tight tissue out.

A method to help stretch tight tissue is postfacilitation technique (PFS) over the gastrocsoleus complex. This is indicated for chronically shortened muscles. The patient performs a maximal contraction with the tight muscle from a midrange position. On relaxation, the doctor quickly stretches the muscle, taking out all the slack. The exact steps for PFS are:

    1. apply strong force against resistance for approximately seven to 10 seconds;
    2. instruct the patient to relax immediately;
    3. elongate the muscle fast and maintain muscle in stretched position (10 to 15 seconds);
    4. wait approximately 20 seconds before the next resistance, allowing the muscle to regain normal irritability threshold;
    5. repeat three to five times.

Note: Never stretch if the patient is unable to relax.

A question that often comes up in rehab is, “What should this patient do first, stabilize or mobilize?” Both have significant positive clinical benefits, and it is often advantageous to do both at the same time. The overhead deep squat allows the body to integrate both stability and mobility into function.

If your patient does not meet the benchmark criteria for the overhead deep squat evaluation, you should ask yourself, “Do they need mobilization or stabilization to improve the movement pattern?” The following functional knee-to-chest test will help you sort out this question. Have your patient lie down in the supine position and ask them to “bring the knees to the chest.” If they can bring the knees to the chest and maintain a flat back on the floor, they do not have a mobility problem. If you stood them upright on their feet while in the knee-chest position, they should be in the ideal posture for the squat.

Observe: Patient supine – raises arms overhead and performs knee-to-chest. Assess and relate: If the patient has increased ROM, they can do a full squat. It’s not a ROM issue. Retest: Challenge the patient for stability versus mobility. Stability is reliably tested under low-load situations. Patient position: Supine; perform bilateral knee-to-chest. Doctor notes the distance and location of the thighs on the torso. Patient’s arms are outstretched in front of the body. The practitioner resists bilateral arm flexion. Reassess: Can the patient bring the knees closer to the chest?

Indicates: Increased ROM or decreased pain indicates patient cannot perform the deep overhead squat due to poor stability. Relate: The patient will benefit from a stabilization program. Observe and test: Perform the overhead deep squat with resistance to abduction at the knees (with a band or belt around the knees). Reassess: This leads to increased ROM, but the patient still has pain. Indicates: This is not a gluteus medius issue.

Functional child’s pose. Ideally, there should be even flexion throughout the lumbar and thoracic regions. Observe and test: The patient performs a yoga-type child’s pose with outstretched arms over the head. Instruct the patient to perform posterior rocking such that the posterior glutes touch the heels. Visually observe the spinal contours. Assess: If a patient has an area of increased kyphosis and is unable to get the spine in a natural curved posture, it is likely a hypomobile or stiff area. The purpose is to assess patients who may be hypomobile. It is important to identify stiff or restricted segments, because these may be a cause of compensatory hypermobility or “give” at an adjacent joint. The site of the “give” or compensation can be the site of the pathology and pain. The stiff area will need to be mobilized with manual techniques and/or the patient can be instructed in the use of a foam roll for self-mobilization.
Improving the quality of the deep overhead squat: Here are four specific progressions and sequences that will improve the deep overhead squat:

Toe-Touch Progression #1:

    • Stand erect with feet side by side, heels and toes touching.
    • Elevate balls of the feet onto a 1- to 2- inch platform.
    • Insert a towel roll or foam roll between the knees.
    • Reach for the ceiling, stretching the arms as high as possible with palms facing forward.
    • Touch fingertips to toes.
    • Repeat for 10 to 12 reps.

Toe-Touch Progression #2:

    • Stand erect with feet side by side, heels and toes touching.
    • Elevate the heels on a 1- to 2-inch platform; toes on ground.
    • Insert a towel roll or foam roll between the knees.
    • Reach for the ceiling, stretching the arms as high as possible with palms facing forward.
    • Touch fingertips to toes.
    • Repeat for 10 to 12 reps.

Reverse Squat Sequence:

    • Stand with the heels on a 1- to 2-inch platform, feet spread shoulder-width apart or wider.
    • Bend forward until the entire palm can be laid flat on the floor or on a 2-, 4- or 6-inch platform. The entire palm must be flat.
    • Lower the body, knees outside of elbows; keep the feet straight.
    • Sit deeply into the squat.
    • Stretch for 20 seconds.

Deep Squat to a “Y” Position Sequence:

    • Start from a deep squat position with the hands on the platform.
    • Raise the right arm over the head. Follow the hand with the eyes.
    • Raise the left arm over the head. Follow the hand with the eyes.
    • With both hands in a “Y” position, extend the spine as much as possible.
    • Stand up.
    • Repeat for 10 to 12 reps.

How to identify impairment in the overhead deep squat. Observation: The patient complains of flexion-related symptoms in the lumbar spine. The lumbar spine flexes during the descent. Relate: The lumbar spine has greater motion into flexion relative to the hips under flexion load. Rehab: The patient needs to learn to forward lean with a straight back and independent hip flexion, but only as far as the neutral lumbopelvic position can be maintained. Observation: Abnormal lumbar extension during the descent/ascent. Relate: This implicates short illiopsoas, lumbar erectors, quadratus lumborum and latissimus dorsi muscles. Rehab: The patient performs a “single-leg forward bend” with the foot of the tight side on a stool. This puts the knee and hip into slight flexion. Put the foot of the tight side flat on a stationary stool approximately 12 inches high. Ask the patient to bend forward and touch the fingertips to the floor. Repeat this 10-12 times.

Functional stability grip assist. Observe: During the overhead deep squat, the doctor observes that the heel of foot rises while descending from the neutral starting position. Retest: Ask the patient to keep their feet flat. If you notice a lack of depth with the heels flat on the ground, this may be from a lack of stability and/or a short soleus muscle. Retest: Have the patient perform the “functional stability grip assist deep squat: – the patient grips each hand to a door knob, a bar or the back of a chair. Perform the deep squat. Depth should improve; then stretch the Achilles, gastrocnemius, quadriceps and gluteals. Holding onto a rail or bar will enhance stability that provides active control of the local or global muscle’s ability to control motion. Relate: Lack of depth indicates restricted Achilles, gastroc, quads and superficial glut max. Observation: There is a lack of depth and the knees drift internally during descent and/or ascent. Assess: Lack of depth indicates dysfunction of the adductors, gluteals and proximal hamstring. Rehab solution: Lie on your back with your feet up on the wall. As you get more functional, your hips will sit closer to the wall and be flat on the floor at the same time. When you get your legs up on the wall, allow them to spread apart to stretch the adductors. Tighten the thighs and pull your toes back toward your knees and hold for one to four minutes. Your feet must be pointed straight behind you for your hips to be doing the work needed to stabilize the spine. Progression: Perform the above with a foam roll under the lumbar spine to enhance the lordosis. Spread eagle with the legs and feet up along the side of a wall. This will simultaneously stretch the adductors and hamstrings. Observation: The low back goes into flexion during the overhead deep squat. Assess: If the low back goes into flexion to get depth, this implicates the iliotibial band that inserts into the glut max or lack of lumbar control. Solution: Stretch the gluteus and iliotibial region.

Overhead deep squat asymmetry. Observe: Lack of depth or asymmetry occurs during the range of descent motion. Assess: Does the pelvis shift? The pelvis will shift away from restriction. Relate: Asymmetry when squatting indicates restriction in the hip rotators. Rehab: Stretch or mobilize hip rotators. Instruct the patient to lie on their back with both knees bent and their feet flat on the floor, pointed straight ahead. The patient should place their arms out to the side at shoulder level, cross their right ankle over the left knee and rotate the ankle/knee junction in that same direction to the floor. Instruct them to press the right knee away from their body with the right hip musculature; repeat the exercise on the opposite side.

Dysfunction: Asymmetry when squatting shifting to a side. To determine what hip may be causing the dysfunction, check hip height in prone position. Rehab: Stretch and mobilize hips. The prone anterior hip stretch is performed. With the patient in the prone position, place one ankle under the opposite patella. Ideally, the hips should be symmetrical and the height of the anterior hips should be equal distance from the table top. Observe and assess: Asymmetry when squatting shifting to a side indicates weak abductors. Rehab solution: Strengthen the abductors. Perform an abductor exercise by having the patient stand sideways next to the wall. The leg that is closest to the wall should be placed in 90 degrees at the hip and knee. Push with the outside leg into the wall. Progress to wall ball exercises.

Tucker test. As noted in my previous article, the purpose of this test is to help recruit a deeper and stronger contraction of the gluteal group. Test: Place a quarter on the outside of the clothes between the buttocks at the level of the anus and have the patient hold it in place with a strong gluteal contraction. Assess: Can the patient contract the gluteals strong enough and continuously while performing the bridge exercise up and down so the quarter does not drop to the floor? Relate: In order to hold the quarter in place, the patient must concentrate on performing a strong gluteal contraction. This forces the continuous contraction of the gluteus and initiates a co-contraction of the abdominals. Progression: Have the patient perform the overhead deep squat with the quarter held in the buttocks.

Resources

  1. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia 1989;230(60):20-24.
  2. Caterisano A, Moss RF, Pellinger TK, Woodruff K, Lewis VC, Booth W, Khadra T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J Strength Cond Res August 2002;16(30:428-32
  3. Cholewicki and McGill. Mechanical stability in the vivo lumbar spine: implications for injury and chronic low back pain. Clinical Biomechanics 1996;11(1):1-15.
  4. Clark M. “Introduction to Kinetic Chain Dysfunction.” Course notes, 2005. Copyright NASM.
  5. Comerford M. “Lumbo-Pelvic Stability.” Course notes, 2003. Copyright M. Comerford.
  6. Vermeil A. “Sports & Fitness.” Course notes, 2005. Copyright A. Vermeil.
  7. All the coaches, sports medicine specialists and sports scientists who have shared their knowledge with me.
More

Kyphosis Treatment by Deep Muscle Stimulator and Exercise

by Jeffrey H. Tucker, DC, DACRB

Thoracic kyphosis associated with myofascial pain syndrome is a common clinical complaint. The objective of this article is to describe and discuss management of patients with thoracic kyphosis and associated myofasical pain syndrome using the Deep Muscle Stimulator device and exercise. Thoracic kyphosis is a very common dysfunction, especially as we get older. Sitting in a slumped posture coupled with a sedentary lifestyle can cause and perpetuate kyphosis and myofascial pain. As with most health conditions, prevention of kyphosis is easier than reversing the condition.

Problems occur when the kyphotic curve becomes increased and is associated with stiffness. The thoracic spine is naturally the stiffest section of the spine, because of the rib attachments forming the costotransverse and costovertebral joints. The two main planes of movement are flexion/extension and rotation. The upper thoracic spine has a very important relationship to the neck, scapula and shoulders. The mid thoracic spine has an important relationship with the diaphragm. The costal part of the diaphragm has slips of muscle arising from the internal surfaces of the inferior six ribs and their costal cartilages, interdigitating with the slips of the transverse abdominus.

The thoracolumbar junction has a very important relationship to the lower back. It is important to assess exactly where in the thoracic spine stiffness is taking place. Stiffness in the upper back with a rounded shoulder appearance is often associated with myofascial pain syndrome in the upper and middle trapezius, rhomboids, pectorals, and levator scapulae muscles. These muscles often feel very tight and overactive. Muscle dysfunction in this area can be from lower trapezius and/or serratus anterior muscle deficiency, muscle tension, muscle inhibition and myofascial trigger points.

The Deep Muscle Stimulator (DMS) developed by Dr. Jake Pivaroff, a chiropractor, (DrJake@D-M-S.com) is a hand held electric motorized device that provides brisk vibration and percussion in rapid succession. To the client it feels like strong vibration. Like manipulation, the DMS influences mechanoreceptor stimulation which may inhibit pain, relax hypertonic muscles, and restore proper motion to restricted spinal joints. The DMS can be used as a stand alone treatment or in conjunction with any other modality or mobilization/manipulation technique. It is especially useful for neuro-myofascial techniques, and pre- or post-manipulation therapy.

The author is currently using the DMS in conjunction with Neuromobilization Techniques as well. The DMS technique causes mechanical contraction of muscle and is performed to treat neuromusculoskeletal conditions. The DMS device is especially useful for covering the entire surface of the back. The brisk vibration and percussion delivered by the device provides pressure and force to overcome the density of the erector muscles, spinous ligaments and thoracolumbar fascia.

I can cover more surface area using the DMS, be more thorough and faster, than using hands alone. Although the patient usually reports feeling relaxed, the device has a stimulating effect upon the nerve receptors. A vibratory sensation is conveyed from the site of application on the body that travels outward for 2-4 inches or further, depending on the patients’ density. Latent trigger points, taut bands and/or tender spots that were not felt by the patient will often be revealed with a sensation when stimulated by the DMS, thus allowing these spots to be worked out.

The body tissues directly influenced by the Deep Muscle Stimulator (DMS) are the skin, the fascia, the muscular system, lymphatic system, and the nervous system. The glandular, digestive, and bony systems are indirectly influenced. In cases of numbness or tingling, this vibration will have a benumbing effect which will react in a sedative manner. Like ischemic compression techniques, the DMS will reduce trigger point sensitivity found in muscle, tendon, periosteum, ligament and skin.

By reflex action through the sensory nerves in the skin a sedative effect is produced by DMS. The muscles and soft tissues are bound together by the deep and superficial fascia, the viscous, gel-like ground substance, and layers of many large and small blood vessels. Metabolites and toxins can become stored in the connective tissues and the DMS will increase vasodilation, allowing tissues to receive adequate fresh amounts of oxygen and nutrients. This process will remove waste byproducts to facilitate tissue recovery and repair. DMS can be lightly used over swollen joints in order to send on through the blood stream the broken down products of inflammation.

Specific treatment for thoracic kyphosis will include manipulation of hypomobile joints and DMS used over the soft tissues. Using the device can be performed in a stroking nature, in which the surface of the device is used lightly or with deeper stroking over the paraspinal musculature. The device provides a deep kneading as well as stroking. Holding the device slightly off the skin to provide light stroking is used in the early stages of treatment or when deeper stroking cannot be tolerated by the client. Light stroking, even in its lightest form, has definite therapeutic effects.

The device is used with a firm, even pressure either in a transverse or circular manner. A definite amount of body surface should be decided upon by the operator before using the DMS. For example, thorough stroking of the gastrocnemius/Achilles tendon and/or the hamstring muscle may be required to release tension that is causing a patient to curl forward contributing to thoracic kyphosis .

Deep Muscle Stimulator Technique for Kyphosis

Changing the relationships among the bones in an abnormal kyphotic spine requires changing the tensional balance through the soft tissues and actively moving the spine. To perform this procedure, the doctor will use the DMS device along the erector spinae muscles while the client performs active motion. Ask your client to stand close to a counter top so their hands can easily rest on the counter top and be used as a support. An alternate position is to have the client sit on a stool or the edge of a treatment table making sure the feet are grounded on the floor.

Have the client assume a “tall spine” posture. Instruct your client to drop the chin toward the chest until a comfortable stretch is felt. Allow the weight of the forehead to carry the thoracic spine into flexion one vertebrae at a time. Complete thoracic flexion and simultaneously treat the paraspinal muscles with the DMS. Instruct the client to curve in the opposite direction, maintain moving the DMS along the paraspinal muscles. Maintain the pressure of the DMS as the client opens into hyperextension at the thoracic spine.

Different forms of mobilization can be used with the DMS, coupled with passive and or active movements to joints. Manual stretching of myofascial trigger points, manual stretching of tissue and muscle fascia, and manual separation of connective tissue can be performed while the operator is using the DMS over the involved tissue.

An office visit using the DMS device can include both manipulation of the joints and soft tissues, or without movements to the joints as a stand alone treatment with its own physiologic effects to the soft tissues. The DMS prevents or breaks down adhesions if tissues are bruised, matted, or thickened. DMS has a reflex action upon the nervous system by affecting the peripheral sensory nerves.   The dry rubbing over the back extensors is often associated with muscular contractions and when the treatment is stopped there is an obvious elevation of the local skin temperature. Patients appreciate that oil or lotion does not have to be applied.

Corrective Exercise

The types of exercises can be broken up into two categories.

First, range of movement exercises aimed at increasing movement of the many joints that make-up the thoracic spine. Flexibility exercises into rotation, flexion and particularly extension are essential. I find the most useful exercise, is to use a high density foam roller, laying it cross the spine in the stiff hypomobile areas, knees bent up and then arching back over it as the most useful flexibility exercise.

The foam roll is used as an inhibitory technique to release tension and/or decrease activity of overactive neuro-myofascial tissues in the thoracic spine. The foam roll provides a very good maintenance flexibility routine and is best performed before stretching as a way to mobilize the joints. Other flexibility exercises that are important are stretches for the pectorals and latissimus dorsi. The static latissimus stretch is accomplished with the client on all fours with one arm outstretched, the hand and forearm on a stability ball. Tightness through here can often pull the shoulders forward and increase the kyphosis.

If someone is stiff and rounded through the thoracic spine, the upper trapezius, rhomboids and levator scapulae muscles are often very tight and overactive. The DMS can be used over these muscles as well as over the latz and pectoralis muscles.

The second group of exercises are to improve muscle tone and endurance and thus posture. The better the muscles are at holding the thoracic spine in correct posture, the less stiff the thoracic spine will become. Key muscle groups are the lower trapezius, serratus anterior and thoracic erector spinae.

Gym based exercises that improve kyphosis are back extension, bent over row and diagonal cable pulls. Performing isolated strengthening is a technique used to increase intramuscular coordination of specific muscles. With the chest on a stability ball and both toes touching the ground, the letters ‘Y’, ‘T’, ‘W’ and ‘L’ can be performed with the arms. Make sure you have your feet on the ground and if required have the feet up against a wall, lay face down with the swiss ball positioned under your chest and stomach. You have to hold your thoracic spine extended while feeling like you are pushing your chest out, pulling the shoulders and scapulae away from your ears (“down and back”). Then make the letters with your arms and hold each position for two breaths. These postural stabilization exercises on the ball can be performed 3-5 days per week. One to two sets of 10-15 repetitions is suitable.

Abnormal kyphosis treatment objectives are: to decrease pain, strengthen weak muscles, decrease mechanical stress on spinal structures, improve fitness levels, induce intersegmental motion, improve posture and improve overall mobility.

In summary, assess the client’s posture for dorsal kyphosis. Observe the thoracic spine during arm raising and lowering. Does the spine straighten or not? Apply manipulation to fixed segments, provide Deep Muscle Stimulator device over thoracic paraspinal muscles with active range of motion, instruct client in corrective exercises.

Example Exercise Prescription for Kyphosis

  1. Give patient advise on proper posture while sitting and standing. Teach clients to perform a sternal lift and “tall spine”.
  2. Train proper respiration.
  3. Deep Muscle Stimulator over the entire back.
  4. Mobilization/manipulation of hypomomobile/fixed joints in the thoracic spine and ribs.
  5. Foam roll at home (daily).
  6. Stretch/lengthen the latissimus dorsi, upper trapezius, subscapularis, pectoralis (daily).
  7. Perform isolated exercises to the lower trapezius and serratus anterior.
  8. Perform integrated exercises: lunge to overhead press with free weights in the hands.
More