All posts in Low Back Pain

Low Back Pain Exercises

Press Up

Relax the buttock and abdomen; fully extend elbows and press up.

Hold for 3-4 seconds.
Repeat 10 times per set.
One set per session.
Complete 3 sessions per day.

Piriformis Stretch

Lie on your back with knees bent. Cross one leg so the ankle rests across the opposite knee. If wanting an added stretch gentle move bent leg toward chest; hold stretch by holding leg under knee. Keep your back flat.

Hold for 30 seconds.
Repeat 1 time per set.
Two sets per side, per session.
Complete as often as needed daily.

Bridge Up & Down

Draw the stomach in and squeeze buttocks as tight as possible. Move the pelvis up and down. If you begin feeling pain in your lower back, pause and start the exercise over again.

Hold for 2 seconds.
Repeat until fatigue.
Two sets per session.
Complete 1 session per day.

Opposite Arm/Opposite Leg (On All Fours)

Tighten stomach and raise right leg and opposite arm. Keep hips level and draw the abdomen in as tight as you can.

Hold for 2 breaths.
Repeat 30 to 50 times per set.
One set per session.
Complete 2 sessions per day.

More

Low Back Exercises

Lower Trunk Rotation

Legs and thighs are raised to 90°: Rotate thighs and legs from side to side, keeping knees together. Keep abs tight.

Repeat 20 times per side, per session.
One set per session.
Complete one session per day.

Opposite Arm/Opposite Leg (On All Fours)

Tighten stomach and raise right leg and opposite arm. Keep hips level and stomach very tight and drawn in.

Hold for two breaths.
Repeat 30 to 50 times per set.
One set per session.
Complete 1 session per day.

One Leg Bridging

With legs bent, lift buttocks so hips are level and elevated. Then slowly extend one leg; keep thighs level and stomach tight.

Hold for :30 seconds.
Repeat 2 times per set.
Two sets per session.
Complete 1 session per day.

Deep Squat

Stand with feet shoulder/hip width apart. Squat deeply trying to keep heels on the floor. Keep head and chest up.

Build up to 50 squats per set.
One set per session.
Complete 1 session per day.

More

Squats: A Functional Assessment of Movement

by Jeffrey H. Tucker, DC, DACRB

Editor’s note: The following article expands upon concepts introduced in “Overhead Deep Squats: Understanding Movement and Function,” which appeared in the Sept. 28, 2006 issue of DC.

What do you do when your patient with musculoskeletal pain gets 80 percent better and progress seems to be stalled? What’s missing to help this patient gain further progress and relief? The answer is in the human movement system. What information are we missing that will allow us to evaluate the human movement system? We can look at how the kinetic chain operates as an integrated functional unit. We need to take a closer look at what our muscles do when we move in everyday life. Functional movements are multidimensional and multiplanar in nature. I find that the deep overhead squat is a useful functional biomechanical analysis.

Current concepts in human movement science provide a useful framework to classify muscle function. We have two distinct yet interdependent muscle systems: the stabilization system (stabilizers or local muscles) and the movement system (mobilizers or global muscles). The local and global muscle systems must integrate for efficient, normal function. Neither system in isolation can control the functional stability of body motion segments. In the presence of chronic or recurrent musculoskeletal pain, patients employ strategies or patterns of muscle recruitment that are normally reserved for high-load function. Pain and pathology do not have to be present concurrently with local muscle dysfunction.

In the presence of pathology and/or pain, a variety of different dysfunctions may present (related to the weak link) in an individual’s integrated stability system. Identifying the dysfunction is a priority of treatment. Musculoskeletal pathology can heal and the symptoms may subside; however, the dysfunction does not always automatically return to a normal baseline. The clinical challenge is how to identify the weak link. Commonly accepted methods of identifying the weak link include posture analysis, gait analysis, flexibility assessment, neuromuscular assessment, single-leg balance excursion, multiplanar lunge test, multiplanar step-up test, push-up test, multiplanar vertical jump/hop, multiplanar horizontal jump/hop, shark skill test, multiplanar cone jump/hop test, and speed tests. Other functional tests to assess core stability, strength, and sequencing include the hurdle step and the wall sit with overhead reach. We can divide these assessments for stability and sequencing into static tests, such as drawing-in maneuvers, plank postures, and holding postures in different planes; and dynamic tests, such as Janda’s movement patterns. The important thing is to not take out the static tests, but to add dynamic testing to understand the human movement system!

As mentioned in my previous article, the overhead deep squat is a valuable dynamic assessment and exercise. If you wish to exercise the glutes, a full-depth squat is highly recommended. I start my evaluation by saying to the patient, “Just do a squat for me” or “Squat down for me.” Observe the patient’s natural or normal pattern of movement. Note the feet, knees, hips (lumbar spine), shoulders and the head while the patient performs the squat. After I observe several squats, I ask the patient to squat down while holding the dowel or a barbell over their head. Both elbows should be in the extended position.

To reiterate, the ideal criteria for a well-performed overhead deep squat are as follows:

  1. upper torso parallel with the tibia or toward vertical;
  2. femur below horizontal;
  3. knees aligned over feet;
  4. dowel aligned over feet;
  5. toes pointed forward;
  6. knees not turned in or out.

Observe: The foot turns outward (externally rotates) while the patient descends. Relate: This implicates a short soleus and gastrocnemius; and long posterior tibialis and medial gastrocnemius. Assess: If the there is excessive outward foot rotation and the hip adducts and/or internally rotates during the descent and/or ascent, this indicates restricted adductors. Rehab solution: Mobilize the external hip rotators; have the patient squat with a spacer between the knees. Place a foam roll or a ball between the patient’s knees and have them squeeze the object as they squat. The size of the ball or roll should place the knees approximately shoulder-width apart.

The question often comes up, “Should the knees go over the toes?” The answer is not that it is necessarily wrong, but that it tends to be the way weak people squat. Weak people will exhaust ankle range of motion first and then begin to flex the knee. This results in excessive knee angles or hitting 90 degrees sooner. Think 4:1 knee-to-ankle movement: 4 degrees of knee movement for every 1 degree of ankle movement. If a patient experiences knee pain while doing a squat, they do not necessarily have to be discouraged from performing them. Teach the movement so they are doing the proper technique, loading the correct muscles and joints and not overloading the knees.

The rehab regression for knee pain while squatting is to perform the “airbench” exercise. Have the patient stand against a wall with their feet facing straight ahead; their hips, upper back and head should be against the wall. The patient should walk their feet away from the wall approximately one foot-length; bend their knees and start sliding down the wall until the knees cover the toes as they look down at their feet. Instruct the patient to hold this position and lift the toes upward to keep the weight in their heels; the lower back should be flush up against the wall. Make sure they hold this pose for one to two minutes.

If you have a patient whose chief complaint is low back pain, yet they can do the deep overhead squat and achieve the benchmark of having the upper torso parallel with the tibia or toward the vertical and the femur below horizontal – but the foot flattens, turns outward and the hip abducts – they must stretch the gastrocsoleus complex for improvement within the kinetic chain. This patient can use the overhead deep squat as therapy to correct the tightness in the calf. For rehab, have the patient perform squats with a 1- to 2-inch board under the heels while squatting. Gradually (over many weeks) lower the board until the patient can achieve the benchmark of keeping the feet flat on the ground. Squat repetitions will stretch the tight tissue out.

A method to help stretch tight tissue is postfacilitation technique (PFS) over the gastrocsoleus complex. This is indicated for chronically shortened muscles. The patient performs a maximal contraction with the tight muscle from a midrange position. On relaxation, the doctor quickly stretches the muscle, taking out all the slack. The exact steps for PFS are:

    1. apply strong force against resistance for approximately seven to 10 seconds;
    2. instruct the patient to relax immediately;
    3. elongate the muscle fast and maintain muscle in stretched position (10 to 15 seconds);
    4. wait approximately 20 seconds before the next resistance, allowing the muscle to regain normal irritability threshold;
    5. repeat three to five times.

Note: Never stretch if the patient is unable to relax.

A question that often comes up in rehab is, “What should this patient do first, stabilize or mobilize?” Both have significant positive clinical benefits, and it is often advantageous to do both at the same time. The overhead deep squat allows the body to integrate both stability and mobility into function.

If your patient does not meet the benchmark criteria for the overhead deep squat evaluation, you should ask yourself, “Do they need mobilization or stabilization to improve the movement pattern?” The following functional knee-to-chest test will help you sort out this question. Have your patient lie down in the supine position and ask them to “bring the knees to the chest.” If they can bring the knees to the chest and maintain a flat back on the floor, they do not have a mobility problem. If you stood them upright on their feet while in the knee-chest position, they should be in the ideal posture for the squat.

Observe: Patient supine – raises arms overhead and performs knee-to-chest. Assess and relate: If the patient has increased ROM, they can do a full squat. It’s not a ROM issue. Retest: Challenge the patient for stability versus mobility. Stability is reliably tested under low-load situations. Patient position: Supine; perform bilateral knee-to-chest. Doctor notes the distance and location of the thighs on the torso. Patient’s arms are outstretched in front of the body. The practitioner resists bilateral arm flexion. Reassess: Can the patient bring the knees closer to the chest?

Indicates: Increased ROM or decreased pain indicates patient cannot perform the deep overhead squat due to poor stability. Relate: The patient will benefit from a stabilization program. Observe and test: Perform the overhead deep squat with resistance to abduction at the knees (with a band or belt around the knees). Reassess: This leads to increased ROM, but the patient still has pain. Indicates: This is not a gluteus medius issue.

Functional child’s pose. Ideally, there should be even flexion throughout the lumbar and thoracic regions. Observe and test: The patient performs a yoga-type child’s pose with outstretched arms over the head. Instruct the patient to perform posterior rocking such that the posterior glutes touch the heels. Visually observe the spinal contours. Assess: If a patient has an area of increased kyphosis and is unable to get the spine in a natural curved posture, it is likely a hypomobile or stiff area. The purpose is to assess patients who may be hypomobile. It is important to identify stiff or restricted segments, because these may be a cause of compensatory hypermobility or “give” at an adjacent joint. The site of the “give” or compensation can be the site of the pathology and pain. The stiff area will need to be mobilized with manual techniques and/or the patient can be instructed in the use of a foam roll for self-mobilization.
Improving the quality of the deep overhead squat: Here are four specific progressions and sequences that will improve the deep overhead squat:

Toe-Touch Progression #1:

    • Stand erect with feet side by side, heels and toes touching.
    • Elevate balls of the feet onto a 1- to 2- inch platform.
    • Insert a towel roll or foam roll between the knees.
    • Reach for the ceiling, stretching the arms as high as possible with palms facing forward.
    • Touch fingertips to toes.
    • Repeat for 10 to 12 reps.

Toe-Touch Progression #2:

    • Stand erect with feet side by side, heels and toes touching.
    • Elevate the heels on a 1- to 2-inch platform; toes on ground.
    • Insert a towel roll or foam roll between the knees.
    • Reach for the ceiling, stretching the arms as high as possible with palms facing forward.
    • Touch fingertips to toes.
    • Repeat for 10 to 12 reps.

Reverse Squat Sequence:

    • Stand with the heels on a 1- to 2-inch platform, feet spread shoulder-width apart or wider.
    • Bend forward until the entire palm can be laid flat on the floor or on a 2-, 4- or 6-inch platform. The entire palm must be flat.
    • Lower the body, knees outside of elbows; keep the feet straight.
    • Sit deeply into the squat.
    • Stretch for 20 seconds.

Deep Squat to a “Y” Position Sequence:

    • Start from a deep squat position with the hands on the platform.
    • Raise the right arm over the head. Follow the hand with the eyes.
    • Raise the left arm over the head. Follow the hand with the eyes.
    • With both hands in a “Y” position, extend the spine as much as possible.
    • Stand up.
    • Repeat for 10 to 12 reps.

How to identify impairment in the overhead deep squat. Observation: The patient complains of flexion-related symptoms in the lumbar spine. The lumbar spine flexes during the descent. Relate: The lumbar spine has greater motion into flexion relative to the hips under flexion load. Rehab: The patient needs to learn to forward lean with a straight back and independent hip flexion, but only as far as the neutral lumbopelvic position can be maintained. Observation: Abnormal lumbar extension during the descent/ascent. Relate: This implicates short illiopsoas, lumbar erectors, quadratus lumborum and latissimus dorsi muscles. Rehab: The patient performs a “single-leg forward bend” with the foot of the tight side on a stool. This puts the knee and hip into slight flexion. Put the foot of the tight side flat on a stationary stool approximately 12 inches high. Ask the patient to bend forward and touch the fingertips to the floor. Repeat this 10-12 times.

Functional stability grip assist. Observe: During the overhead deep squat, the doctor observes that the heel of foot rises while descending from the neutral starting position. Retest: Ask the patient to keep their feet flat. If you notice a lack of depth with the heels flat on the ground, this may be from a lack of stability and/or a short soleus muscle. Retest: Have the patient perform the “functional stability grip assist deep squat: – the patient grips each hand to a door knob, a bar or the back of a chair. Perform the deep squat. Depth should improve; then stretch the Achilles, gastrocnemius, quadriceps and gluteals. Holding onto a rail or bar will enhance stability that provides active control of the local or global muscle’s ability to control motion. Relate: Lack of depth indicates restricted Achilles, gastroc, quads and superficial glut max. Observation: There is a lack of depth and the knees drift internally during descent and/or ascent. Assess: Lack of depth indicates dysfunction of the adductors, gluteals and proximal hamstring. Rehab solution: Lie on your back with your feet up on the wall. As you get more functional, your hips will sit closer to the wall and be flat on the floor at the same time. When you get your legs up on the wall, allow them to spread apart to stretch the adductors. Tighten the thighs and pull your toes back toward your knees and hold for one to four minutes. Your feet must be pointed straight behind you for your hips to be doing the work needed to stabilize the spine. Progression: Perform the above with a foam roll under the lumbar spine to enhance the lordosis. Spread eagle with the legs and feet up along the side of a wall. This will simultaneously stretch the adductors and hamstrings. Observation: The low back goes into flexion during the overhead deep squat. Assess: If the low back goes into flexion to get depth, this implicates the iliotibial band that inserts into the glut max or lack of lumbar control. Solution: Stretch the gluteus and iliotibial region.

Overhead deep squat asymmetry. Observe: Lack of depth or asymmetry occurs during the range of descent motion. Assess: Does the pelvis shift? The pelvis will shift away from restriction. Relate: Asymmetry when squatting indicates restriction in the hip rotators. Rehab: Stretch or mobilize hip rotators. Instruct the patient to lie on their back with both knees bent and their feet flat on the floor, pointed straight ahead. The patient should place their arms out to the side at shoulder level, cross their right ankle over the left knee and rotate the ankle/knee junction in that same direction to the floor. Instruct them to press the right knee away from their body with the right hip musculature; repeat the exercise on the opposite side.

Dysfunction: Asymmetry when squatting shifting to a side. To determine what hip may be causing the dysfunction, check hip height in prone position. Rehab: Stretch and mobilize hips. The prone anterior hip stretch is performed. With the patient in the prone position, place one ankle under the opposite patella. Ideally, the hips should be symmetrical and the height of the anterior hips should be equal distance from the table top. Observe and assess: Asymmetry when squatting shifting to a side indicates weak abductors. Rehab solution: Strengthen the abductors. Perform an abductor exercise by having the patient stand sideways next to the wall. The leg that is closest to the wall should be placed in 90 degrees at the hip and knee. Push with the outside leg into the wall. Progress to wall ball exercises.

Tucker test. As noted in my previous article, the purpose of this test is to help recruit a deeper and stronger contraction of the gluteal group. Test: Place a quarter on the outside of the clothes between the buttocks at the level of the anus and have the patient hold it in place with a strong gluteal contraction. Assess: Can the patient contract the gluteals strong enough and continuously while performing the bridge exercise up and down so the quarter does not drop to the floor? Relate: In order to hold the quarter in place, the patient must concentrate on performing a strong gluteal contraction. This forces the continuous contraction of the gluteus and initiates a co-contraction of the abdominals. Progression: Have the patient perform the overhead deep squat with the quarter held in the buttocks.

Resources

  1. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia 1989;230(60):20-24.
  2. Caterisano A, Moss RF, Pellinger TK, Woodruff K, Lewis VC, Booth W, Khadra T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J Strength Cond Res August 2002;16(30:428-32
  3. Cholewicki and McGill. Mechanical stability in the vivo lumbar spine: implications for injury and chronic low back pain. Clinical Biomechanics 1996;11(1):1-15.
  4. Clark M. “Introduction to Kinetic Chain Dysfunction.” Course notes, 2005. Copyright NASM.
  5. Comerford M. “Lumbo-Pelvic Stability.” Course notes, 2003. Copyright M. Comerford.
  6. Vermeil A. “Sports & Fitness.” Course notes, 2005. Copyright A. Vermeil.
  7. All the coaches, sports medicine specialists and sports scientists who have shared their knowledge with me.
More

Overhead Deep Squats: Understanding Movement & Function

by Jeffrey H. Tucker, DC, DACRB

What are the most common imbalances patients present with? The obvious answer is musculoskeletal imbalances. This article discusses the functional assessment of stability and mobility to movement re-education. Assessment of the overhead deep squat for stability and mobility imbalances will improve your awareness of the patient’s movement dysfunction. Training stability and providing manual mobilization and/or self mobilization are current concepts of movement dysfunction.

A restricted segment can cause a compensation that leads to uncontrolled and increased motion. The uncontrolled segment or region is the most likely site of the source of pathology and symptoms of mechanical origin. Common dysfunctions within the movement system occur when the ankle, hip or thoracic spine needs mobilization, or when the knee, lumbar spine or glenohumeral joint needs stabilization.

There is plenty of evidence to support the link between uncontrolled intersegmental translation or uncontrolled range of motion and the development of musculoskeletal pain and degenerative pathology. Motor control dysfunction within the ankle, knee, hips, lumbar region, thoracic region and shoulder contribute to insidious onset, chronicity and recurrence of pain.

We need to restore ankle dorsiflexion, hip flexion/extension and/or hip adduction/abduction, and thoracic flexion and extension, because there is a frequent relationship between the loss of range of motion at one or more motion segments, and the development of compensatory excessive movement at adjacent segments. Learning to refine mobility and stability will reduce asymmetries and limitations as a means of injury prevention. It is important to establish stabilization prior to strengthening. Evaluate flexibility limitations and asymmetries between the left and right sides of the body. An individual conceivably could overcome a deficit in range of motion in one joint by using more ROM at another joint to achieve the specified goal.

The body is a “kinetic chain” of interconnected parts. I recommend overhead deep squatting as the primary assessment to evaluate whether mobility or stability is required.

The overhead deep squat: The ideal criteria for a well-performed overhead deep squat are:

    1. upper torso parallel with the tibia or toward vertical (back is relatively upright);
    2. femur below horizontal;
    3. knees aligned over feet;
    4. both arms overhead with the dowel aligned over feet;
    5. toes pointed forward; and
    6. knees don’t turn in or out.

Hypomobility at any joint in the lower extremity kinetic chain can challenge the motor-control mechanisms of the patient and lead to joint instability. Joint hypomobility can present as dysfunction of intra-articular motion, producing limitations of the accessory movements of roll and glide between the joint surfaces. Limited range of motion also can occur in the myofascial system (extra-articular in nature). These two components are interrelated and often occur together. The abnormal displacement or restrictive barrier to movement changes the normal pattern of movement of the instantaneous axis of rotation (IAR). Movement around an abnormal axis of rotation imposes abnormal compression or impingement on some aspect of the joint tissues and produces altered proprioceptive input to the central nervous system. The motor-control system must adapt to maintain function. These faulty movements increase microtrauma in the tissues around the joint, which, if accumulative, lead to dysfunction and pain.

After an ankle sprain, hypomobility may occur at the subtalar joint, talocrural joint, distal tibiofibular joint, or proximal tibiofibular joint. Limited dorsiflexion after lateral ankle sprain has been attributed to tightness in the gastrocnemius-soleus complex, capsular adhesions developed during immobilization, and subluxations or any combination.

Ankle: The hypomobility of the ankle or tissue tightness can be observed during the overhead deep squat if the heel of the foot rises while descending from a neutral starting position. This is the result of limited soleus muscle motion (e.g., ankle dorsiflexion). Motion can be restored and maintained despite restricted arthrokinematic motion. Restoration of dorsiflexion and normal gait patterns occurs after anterior-to-posterior (manual or self) mobilizations of the talus in the mortise.

If the patient’s toes turn outward while descending from the starting position, it means he or she may have weak, tight lateral gastrocnemius, hamstrings, weak inner thighs, and is at risk for Achilles tendonitis.

The progression of rehab to improve the foot dysfunction is to start the patient with ankle self-mobilization. The patient starts out in the double-leg stance. Take a single step forward onto a stool with the right foot. Ask the patient to flex the ankle and knee over the stool as far as they can go. Compare to the left side. The restricted side can be stretched and mobilized while on the stool by repetitively moving the knee over the foot. Altered movement of the subtalar joints and soft tissue tightness can be restored through self repetitive range of motion maneuvers. Next, have the patient perform a wall stretch. With their hands against a wall, feet flat on the ground and one foot at least 18 to 20 inches behind the other, have them bend the front knee. Hold the static stretch for at least 30 seconds. Do this at least two times per leg. The next exercise involves standing on one foot, turned in 45 degrees with the heel hanging off a step. The patient’s body’weight is on the forefoot. Have them hold onto a wall or rail handle and let their body weight drop down. Instruct the patient to hold this stretch for at least 60 seconds.

Knee: If the knees drift inward while descending from the start position of the overhead deep squat it may mean the patient has weak glutes, tight inner thighs, and is prone to knee and low back problems. The patellofemoral joint may be influenced by the segmental interactions of the lower extremity. Abnormal motions of the tibia and femur in the transverse and frontal planes are believed to have an effect on the patellofemoral joint. The first progression for the knee is to use a foam roll on the adductor and abductor muscles. Firmly press and roll along the tight tissue for several minutes or until you feel a release of tight tissue. Have the patient perform a lunge at a 2 o’clock or 3 o’clock pose with the right leg and a 10 o’clock to 11 o’clock pose with the left leg. The patient should next perform side-lying leg raises. Do not allow the quadratus lumborum muscle to activate early. Raise and lower the top leg, keeping it straight. Isolate the TFL and glute medius. Only perform this on the side that drifts.

Hip: If the patient can keep the feet straight ahead or have only slight external rotation, plus the heels stay flat on the floor while squatting, but they cannot achieve the depth of getting the femurs below the horizontal, they may have tightness where the TFL attach into the glutes. The hip joints may be restricted. The rehab progression is to start with manual mobilization of the hips. Teach the patient how to perform hip range of motion on their own. Part of this solution is simply to do repetitive squats. Over time and many repetitions, the patient will break up the tissue tightness and be able to squat lower and lower.

If you suspect a patient is having a hip extension firing problem during gait, with the hamstrings dominating the movement pattern, rocker sandals can help retrain the gluteus maximus. There are a number of ways to “wake up” the gluts while squatting: for example, weight shift toward the heels, bridges up and down with a therapy band around knees to provide resistance to abduction; side steps with a band around the ankles; or bridges on a gym ball with alternate heel raises. Tight hip flexors will inhibit the gluteus, so these need to be evaluated for length.

For a stronger gluteal contraction, perform the Tucker test, the purpose of which is to help recruit a deeper and stronger contraction of the gluteal group. Test: Place a quarter on the outside of the patient’s clothes between the buttocks at the level of the anus, and have the client hold it in place with a strong gluteal contraction. Assess: Can the patient contract the gluteals strong enough and continuously while performing the bridge exercise up and down so the quarter does not drop to the floor? Relate: In order to hold the quarter in place, the patient must concentrate on performing a strong gluteal contraction. This forces the continuous contraction of the gluteus and initiates a co-contraction of the abdominals. Progression: Have the patient perform the overhead deep squat with the quarter held in the buttocks.

Lumbar: If the patient’s back bends into flexion while performing the overhead deep squat, it may mean they have tight hip flexors, a weak core and poor posture. This is such an important diagnostic tool. Why is this point so important? The lumbar spine may be more flexible relative to the hips in flexion due to lengthened erector spinae and shortened hamstrings. This can lead to a hamstring strain, but more importantly, the muscles that control excessive lumbar flexion (lumbar erector spinae) have more “give” than the muscles that limit hip flexion (hamstrings). Consequently, during trunk flexion the lumbar spine gives more easily than the hips and excessive flexion occurs in the lumbar spine relative to the amount and time of flexion at the hip joints, resulting in compensatory lumbar flexion and a potential lumbar flexion stability dysfunction. The patient complains of flexion-related symptoms in the lumbar spine. You can see how this will translate to their everyday life. See if you can detect the following possible flexion movement dysfunctions in the low back when the patient forward leans while performing the overhead deep squat:

    1. Shortened back extensor mobilizer muscles (longissimus and iliocostalis): The pelvis shifts more than 4 to 5 inches posteriorly during forward bending and the spine demonstrates limited flexion.
    2. Shortened hamstrings: The hips demonstrate less than 70 degrees of hip flexion during forward bending.
    3. Lengthened gluteus maximus: The hips demonstrate more than 90 degrees of hip flexion during forward bending.
    4. Lengthened back extensor stabilizer muscles (superficial multifidus and spinalis): The spine demonstrates excessive flexion during forward bending.

The progression of rehab is to use the foam roll on the anterior and lateral sides of the hips. Work out as much tissue tightness as you can on the foam roll. To stretch the hip flexors, teach your patient to do a lunge with an arm raised overhead. The precise steps are as follows: Leading with the right foot, the patient performs a lunge while raising the left arm overhead and rotating the upper body to the left. Instruct the patient to hold this pose for 30 seconds and to perform at least two stretches on each side. The most important solution for this movement dysfunction is to control movement at the site of the instability. This concept is a process of sensory-motor re-programming to regain proprioceptive awareness of joint position, muscle activation and movement coordination. This training is beyond the scope of this article. However, you can start by teaching clients to co-contract the mutifidus and transverse abdominus muscles.

Thoracic: During the overhead deep squat, the patient presentation of lack of mobility in the thoracic spine may include the inability to get the dowel directly over the feet. I usually find the arms way out in front of the feet. These patients lack thoracic extension. You will feel restricted motion on palpation of the thoracic spine into extension. The patient may have an obvious forward-drawn posture, anterior head and shoulder carriage (slumping) and/or an increased kyphosis. The rehab solution for this dysfunction is mobilization. The foam roll will allow for self mobilization into extension. The repetition of performing self-mobilization of the thoracic spine into extension, while the patient performs the overhead deep squats, is an exercise in and of itself. Another self-mobilization maneuver involves asking the patient to sit on a chair facing the wall, leaning the forehead on crossed arms against the wall. The patient’s knees and toes touch the wall. Taking deep breaths in and out, on the exhalation the patient forces thoracic extension movement, repeating the process about 10 times. I often find the thoracolumbar junction, T6 and above, as the key joints to manipulate to create flexibility.

Shoulder: The gleno-humeral functions. Stability is sacrificed to a large degree to achieve this mobility. During the overhead deep squat you will observe the patient pushing the dowel behind their back instead of over the head. To correct the instability in the shoulder we need to correct the length-tension relationship, improve muscle endurance and coordination of the rotator cuff muscles. These muscles act in a manner to generate a force balance to maintain centering of the joint throughout the range of motion.

Assessment of the overhead deep squat provides analysis of stability and mobility. An exercise program based on the assessment can be implemented to achieve stability and mobility. Stability is only tested reliably under low-load situations. Mobility is based on the ability to pass or fail the ideal criteria of the overhead deep-squat posture. The benefits of having good stability function of both the local and global stabilizer muscles, as well as good joint flexibility, are improved low-threshold motor control and reduced mechanical musculoskeletal pain.


Resources

  1. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia 1989;230(60):20-24.
  2. Caterisano A, Moss RF, Pellinger TK, Woodruff K, Lewis VC, Booth W, Khadra T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J Strength Cond Res August 2002;16(30:428-32
  3. Cholewicki and McGill. Mechanical stability in the vivo lumbar spine: implications for injury and chronic low back pain. Clinical Biomechanics 1996;11(1):1-15.
  4. Clark M. “Introduction to Kinetic Chain Dysfunction.” Course notes, 2005. Copyright NASM.
  5. Comerford M. “Lumbo-Pelvic Stability.” Course notes, 2003. Copyright M. Comerford.
  6. Vermeil A. “Sports & Fitness.” Course notes, 2005. Copyright A. Vermeil.

Dr. Jeffrey H. Tucker graduated from Los Angeles College of Chiropractic in 1982. He is a diplomate of the American Chiropractic Rehabilitation Board and teaches a 14-hour postgraduate diplomate series on cervical and TMD rehab and lumbar spine biomechanics and rehab. Dr. Tucker practices in West Los Angeles and Encino, Calif.

More

Functional Exercises: Hamstring Stretching for Low Back Pain

by Jeffrey H. Tucker, DC, DACRB

The sun salutation in yoga is where you begin by standing on your mat with your feet together (toes and ankles touching) and your arms by your sides. Lengthen your spine upwards from the tip of the tailbone to the crown of your head. Inhale deeply. Exhale and bring the hands together in the prayer position. Inhale as you stretch your arms up beside your head, lengthening and arching your spine. Exhale and bend forward, hinging from the hips, with your arms stretched out in front. Place your hands flat on the mat beside each foot, bending your knees if you have to. Try to bring your forehead to your knees. STOP right here. The sun salutation continues on with other maneuvers, but I want to talk about the toe-touching portion. It’s this maneuver, whether during a yoga class, bending over in the shower or picking up an object on the floor that can cause so much trouble for our lower backs.

A forward bend does not require straight legs. The key is to aim for a perfect hinge from your hips no matter how straight you can press your legs. If you can touch the floor but the spine is bowing to achieve this, you leave the hip hinge open and the stress is carried in the back and knees. Short hamstrings are common and the body compensates for this restriction by increasing motion in the lumbar spine. In normal functional movement, the brain and central nervous system (CNS) have a variety of strategies available to perform any functional task or movement. During functional bending-forward movements, a relatively stiffer hamstring muscle tends to resist ideal movement, but function is maintained by excessively increasing lumbar spine flexion range. This is what is called “compensation.”

It’s not unusual for a person with tight hamstrings to compensate with resultant lengthening or overstrain of the lower lumbar spinal extensor muscles (lumbar spinalis and superficial multifidus). Once the lumbar spine has developed abnormal compensatory motion, the stabilizing muscles and supporting structures (e.g., ligaments) around the lumbar joints become too flexible, more lax or provide insufficient stiffness or resistance to motion. These joints are now poorly controlled by the muscles. This can cause pain in the low back region with daily activities and unguarded movements, as well as sitting, standing and lying postures.

The lumbar spine may be more flexible relative to the hips in flexion due to lengthened erector spinae and shortened hamstrings. The muscles that control excessive lumbar flexion (lumbar erector spinae) have more give than the muscles that limit hip flexion (hamstrings). In summary, if you repeatedly bend forward with tight hamstrings, the lumbar spine may give more easily than the hips. Excessive flexion will occur in the lumbar spine relative to the amount and timing of flexion at the hip joints. This results in compensatory lumbar flexion and potential lumbar spine instability.

A lumbar flexion instability does not require that muscle or connective-tissue structures are tight or short (e.g., hamstrings in the lumbar flexion dysfunction), although you may have a sense of the hamstrings being tight. It does matter that the hamstrings are less flexible and have less give than the muscles at the site of greater relative flexibility or those designed to control dysfunction (erector spinae). Likewise, it does not require that muscle or connective- tissue structures be weak at the site of greatest relative flexibility or overstrain (e.g., abdominals in the lumbar extension dysfunction). It only requires that they have more give or are functionally longer than the muscles at the adjacent segment (hip flexors), which may be very strong or short.

The hamstrings seem to have a clear function. They produce range-of-joint movement (flex the knee joint and extend the hip). The hamstrings are an eccentric resistor of knee extension in sprinting. Correcting the length of the hamstring may be important while simultaneously strengthening the lumbar region. The following procedures are not to be done if your low back is in the inflammatory stage.

Self Test: Bend over and try to place fingers or palms to the floor. Measure the distance of the middle fingers from the floor. Benchmark is the ability to have palms flat on the floor.

Dysfunction: Not able to touch fingers to the floor; you feel discomfort or pain in the low back; or your thoracic spine or lumbar spine are bowing, with the hip hinge wide open.

Solution: Think of a belt lifting the hips up and elongating the spine. Push your heels down and push your bottom up. Stretch the hamstrings with the back locked. Practice separating the tailbone from the chin while hinging at the hips.

Self Test: Bend over and try to place fingers or palms on the floor.

Dysfunction: The thoracic spine and the hamstrings feel tight.

Solution: Practice bending over at the hip hinge with outstretched arms over your head while simultaneously maximally tightening and squeezing the buttocks (gluteals) and fists (keep the arms outstretched). Continue bending over at the hip hinge, fists and buttocks as tight as possible, for eight seconds. Release the tension but don’t come back up yet. Repeat the squeezing of the glutes and fists for eight seconds. Practice this maneuver with your buttocks against a wall and then continue to get lower and farther away from the wall. Try to isolate the hamstring muscle and belly, not the attachments behind the knees. Repeat this maneuver five to seven times.

Self Test: You look at your posture and see that the thoracic spine is rounded. Your normal posture has rounded shoulders.

Dysfunction: You have restricted thoracic spine motion or you have kyphosis (loss of the normal spinal curvature).

Solution #1: Release the knotted tight tissue, joints or adhesions along the spine by lying on a foam roller and putting pressure on the knots for 20-30 seconds while breathing. Do this daily for five to 10 minutes.

After this, lie down on your stomach with your hands and arms along the sides of your body (palms up). Lift up the head, shoulders and torso as high as you can toward the ceiling. Build up to the same number of repetitions as your age.

Solution #2: Practice squats while facing a wall. Stand close to the wall so your nose almost touches it; try to move your feet closer and closer to the wall. Keep the feet straight forward, allowing the movement to occur in the hips and lengthening the spine.

To stretch the back and the hamstring: Use the bow maneuver. While the back is at 90 degrees, pry one hand to the opposite heel; keep prying side to side. An important principle of stretch is to spread the load. You can go further with less stress. Repeat the original toe-touch test.

Still can’t put your palms on the floor?

Solution #1: Thoracolumbar spine post-isometric relaxation (PIR): This definitely will allow the client to bend further in the toe touch. This maneuver requires two people.

  • The client bends over with proper mechanics at the hips (push the heels down and the bottom up). Remind the person to “spread the load.”
  • Tell them to keep their weight even from the toes to the heels.
  • Place both flat palms on the client’s lower thoracic spine.
  • Ask the client to lift the thoracolumbar region, initiating from the hips and elongating the spine (think tailbone-to-chin). Resist the client’s upward movement for approximately eight seconds. You are not pushing down; you are resisting their upward movement. You do not have to be heavy-handed to give the client’s back a nice release and stretch.
  • Have the client release the upward push and simply follow them downward (lower).
  • The client stays in the new lower position and repeats the process three to five times.

Solution #2: Long-sitting partner stretch with post-isometric relaxation (PIR) technique: This maneuver requires three people. One is the person being stretched and two assistants. Two people face each other on the floor. The third person is sitting back-to-back with the person being stretched. The client’s legs are straight in the long-sitting pose. The client must hinge in the middle. The first assistant’s legs are straddled to the outside of the client’s legs. The second assistant is gently leaning against the client’s back to prevent them from leaning backward.

The first assistant takes hold of the client’s wrists in a monkey grip. The client leans forward as if they were folding, hinging from the hips, lengthening the lower spine out of the hips, making the stomach as long as possible and bringing the back as close to parallel to the floor as possible. The first assistant leans backward taking out the slack in the arms. The client is using muscles to actively extend the spine and lengthen the back of the legs, moving them forward. Remind the client to keep the arms straight and “stretch the back, breathing into the tailbone.” Keep the head in alignment with the spine. The weight of both assistants supports the stretch. Repeat this maneuver three to five times, using the principles of PIR. To come out of the stretch, the client can bend their knees slightly as they come upright.

Resources

  1. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia, 1989;230(60):20-4.
  2. Cholewicki J, McGill S. Mechanical stability in the vivo lumbar spine: implications for injury and chronic low back pain. Clinical Biomechanics, 1996;11(1):1-15.
  3. Comerford M. Lumbo-pelvic Stability. Course notes. 2003 and 2006 Copyright Comerford.
  4. Hodges P. Transversus abdominus and lumbar multifidus muscle. Course notes. 2002 Copyright Hodges.
  5. Tsatsouline, Pavel. Stretch Course. 2007 Copyright Tsatsouline.
  6. Vermeil A. Sports & Fitness. Course notes. 2005 Copyright Vermeil.
  7. All the coaches and sports-medicine scientists who have shared their knowledge with me.
More

Advanced Functional Exercises For the Hips and Low Back

by Jeffrey H. Tucker, DC, DACRB

*This article was submitted to DC on 1-20-07. Accepted for publication 2-27-07. Printed May 2007.

Movement assessments have become a clear and comprehensive evaluation and approach to my Chiropractic therapy. It begins with me looking at each clients standing posture. I then ask my client to perform a series of postures. You know this portion as ‘range of motion’ evaluation. For example, I say to the client, “Bring your chin to your chest”, etc., or “bend forward to touch your fingers to the floor” or “raise both arms over your head” bla bla bla! It is old school, but I realize I need to document how far they move and if any sensations present themselves. I have become a keen observer of these movements, one who is not just interested in how far they move, but more interested in the way they move and what there movement pattern can tell me. The evaluation continues with a series of dynamic and static postures to observe how the muscles and joints move. Through this process I generate a sequence of home exercise programs for my clients. Please realize, the movement assessments can be performed prior to any hands on work that you do, or the assessments can conclude with a mobilization or manipulation that you feel is necessary.

If you have read my previous articles you will know that I start with the squat assessment. Observe the client perform a squat several times. Simple say “Let me see you do a squat with your arms out in front of you.” The benchmarks that I look for on this evaluation are that the:

  1. Upper torso is parallel with the tibia or toward vertical (back is relatively upright).
  2. Femur below horizontal.
  3. Knees aligned over feet.
  4. Toes point forward.
  5. Knees don’t turn in.

If they cannot accomplish the above criteria I start the correction process with the following training: I call this the supine120 degree knee to chest maneuver. Client lays supine in the 90/90 position. The knees are over the hips and the legs are parallel to the floor. Doctor stands at the feet of the client and uses a knife edge contact along the clients ankle crease. The Doctor resists at the ankle crease while the client is instructed to “pull your knees to your chest.” The Doctor allows the client to move into a knee to chest position. The doctor is providing resistance, not overpowering the client. The client’s lumbar region should remain in the neutral spine. Instruct the client to focus using the lower abdominals, especially the area slightly above and below the inguinal region. Allow the hips to get to at least 120 degrees. This maneuver is a great way to get clients to re-awaken this area. Bring awareness of tightness to this area while you tell the client to release tension or resistance in other areas such as the neck or shoulders that are not needed for this maneuver. Repeat this maneuver as many times to client tolerance.

The next progression is a pose called ‘Find your stance’. This is used as a foundation of all standing postures and movements. I want this to become the natural way to stand. It cultivates a sense of strength and stability. Begin with your feet (shoes off) between your hips and shoulders – go with what feels natural and comfortable. Slightly angle your feet outwards with your weight evenly spread through the balls, lateral edge and heel. Avoid your arches collapsing inwards. Try to feel the medial and longitudinal arches lift up.

Assisted Squats: Doctor and client face each other. ‘Find your stance’, or spread feet to shoulder width or slightly wider if needed; client holds arms and hands out in front of there body; Doctor holds hands with client and assists client to squat. The command is “pull your butt down.” The Doctor is providing assistance so the client doesn’t fall down. However, the client may fall to the floor the first or second time and that is perfectly normal and O.K. to do. Simple get back up and attempt it again. The idea is to allow them to go as deep as possible. Get the client to engage the groin crease muscles to pull them down. The goal of doing this squat is to reach back with the buttocks and down, ex. Sit back on a chair with control. If you have a rope or Theraband (at least the strength of a black theraband), you can wrap it around the clients back and underarms while you hold the ends in the front of the client and ask then to “sit down against” that resistance. Doctor coaches the client to keep the back straight, in this case as vertical as possible. FIGURE 1 Rubber tubing under the arm pits and you assist client to sit down against this resistance. The knee should not bow inward.

“Pull the hips out of the socket” routine to squat. This maneuver requires two assistant partners (the doctor plus an assistant). The client is instructed to squat down in a wider than shoulder stance. The Doctor is to the left of the client and the assistant on the right side. Each assistant places one flat hand behind the posterior leg just below the knee crease. The other hand is placed in the inguinal fossa/ligament crease with a knife edge contact. Assistants use enough pressure to guide the client into a deeper squat. Ask the client to feel like they are pulling the hips out of the socket as they descend. This allows the client to understand and feel the proper joints and muscles to use to accomplish this squat. Allow the client to learn in a wide stance and go as low as they can. As they improve strength they can get into a more narrow stance. Less core muscle is required in a wide stance than a narrow stance. Repeat this maneuver several times. Do a simple test on yourself. Stand in a wide stance and go narrower and narrower until you are in a one legged stance. Feel how the core is participating. Eventually we will get clients to have there feet closer and closer together and this will demand greater core strength.

Right after this maneuver, it will help your client if the Doctor rubs his/her index fingers along the spinous processes while the client does several more squats. This is performed starting at approximately the middle of the back with both index fingers. At the same time rub one finger headward and the other caudal along the spinous process while the client squats down and up. While you rub the spine, instruct the client to stay in a “tall spine” posture. They need to imagine creating more room in the hip socket. Tell the client to think of one thing and only one thing on the way up and that is “gluteals.” You don’t need to suck the stomach in if you elongate the spine, it will automatically come in if they are working to resist extension.

Squat against the wall. This is such a new take on the old school method of a wall squat. Once a person can accomplish the “static wall squat” also known as the “wall sit”, “wall chair,” “airbench” or “back against the ball squat” for one minute, they are ready for this maneuver. Find the distance away from the wall so that when you squat down your sacrum stays in contact with the wall. The key is to keep the sacrum touching the wall. Squat down with arms on the inside of the thighs until the elbows can push against the inner thighs. Put your hands in a prayer pose and push the elbows against the inner thighs. Pry the hips apart as you wiggle side to side going lower and lower. Continue this gentle rocking side to side and attempt to go lower and lower opening the hips. You should feel this in the most proximal attachments of the adductor muscles and hamstrings. Hold this pose for as long as you can and then concentrate on getting back up using the gluteals and keeping the sacrum in contact with the wall. Try this maneuver several times. One minute in this pose really gets you feeling warm. Attempt this with a narrow stance compared to when you are away from the wall. The next progression is to repeat the squat away from the wall.

PIVOTS: These help open the hips. Standing with your feet more than 3 feet apart, with outstretched arms (abduction) to your sides away from the body (the feet should be under the wrists distance). The feet will need to be angled slightly outward approximately 15 degrees. Keep the torso facing forward. Lunge gentle to the left until your knee is bent in a right angle above your left foot. Lengthen the spine upward (“tall spine” concept). Move side to side going more and more lateral (lower). The opposing forces of your legs provide balanced stability. Don’t lean the body towards the bent knee, try to keep the torso upright as much as possible. Imagine the hands pulling further side to side. Allow the sitting bone to be pulled backwards. The legs, both pushing forwards and pulling backwards, allow the hip to hinge and become stable at the same time, two opposing forces balancing one another. Shoulder blades should be kept down.

I recommend clients practice these maneuvers daily. I want my clients to observe subtle changes in posture, decreased pain, increased range of motion, feelings of stability, and a greater capacity for work and sport. As individuals vary in strength, flexibility, and coordination so the practice of functional exercises will be unique to each individual. Using progressive movement as assessments in your practice will tell you where the client is strong or weak, symmetrical or asymmetrical, balanced or imbalanced, coordinated or incoordinated, and which areas need more practice.

References

  1. Bergmark A 1989 Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia 230(60):20-24.
  2. Caterisano A, Moss RF, Pellinger TK, Woodruff K, Lewis VC, Booth W, Khadra T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J Strength Cond Res 2002 Aug; 16(30: 428-32
  3. Comerford M 2003 and 2006 Lumbo-pelvic Stability. Course notes. Copyright Comerford.
  4. Tsatsouline, Pavel 2007 Stretch Course. Copyright Tsatsouline.
  5. Vermeil A 2005 Sports & Fitness. Course notes. Copyright Vermeil.
  6. All the coaches, sports medicine, and sports scientists who have shared their knowledge with me.
More

Neuromobilization – femoral

by Jeffrey H. Tucker, DC, DACRB

Neuromobilization is a technique that details the assessment and analysis of radiculopathy. It involves specific maneuvers for upper and lower extremity sensory disturbances.1 Most musculoskeletal pain and dysfunction represents the result of a failure of adaptation.

It is easy to imagine that nerves can become stuck from disc pathology, lateral canal stenosis, fascial glue or any other structure that wraps, invests, supports, separates, connects, divides or may become sticky. The ground substance can become thick and sticky. It is likely that a nerve can become “held” or “stuck” in an area of ground substance that has become viscous or gel-like, or in areas of inflammation.

Neuromobilization is one of the least invasive therapeutic interventions that can start the healing and repair of radiculopathy. The femoral nerve, sciatic nerve, median nerve, radial nerve and ulnar nerve have lines of pull. Neuromobilization procedures are directed at multiple joints, and it is difficult to determine exactly where the nerve may be stuck.

The techniques are taught with two people simultaneously making the correction on the patient. Since it is not always possible for practitioners to have an assistant available to aid in the correction, I have found that a deep muscle stimulator (DMS) device is extremely useful. The hand-held device provides percussion and concussion vibration that allows specific point pressure to increase circulation and oxygenation to the tissues. The stimulator device will allow the muscle to achieve a new resting length. Fascia is stretched and will change length and hold the new form. The stimulator device also relieves joint irritation and inflammation to the surrounding area and nerve; a fixation or joint stiffness may cause a nerve to be hypomobile and irritated every time it is pulled.

Once the patient is comfortable doing at-home stabilization protocol exercises for the neck and back, it is time for them to progress to more advanced corrective exercises. For example, with the patient relaxed in the centrated side-lying posture, you can use a stimulator device in the sciatic-notch region for sciatic-nerve radiculopathy while the patient is talked through actively moving the top leg into abduction, hip flexion, and foot dorsiflexion/plantarflexion.

Advanced Exercises for the Femoral Nerve

Reverse lunge: Stand with feet hip-width apart in front of a mirror with a resistance band wrapped/tied around the knees. Ensure your lumbar spine is in neutral and your back is tall, with your shoulders back and head up. Slide backward with your right leg and bend your left knee only halfway down. Ensure that your front knee is in line with your toes and your back has remained upright, with your lumbar spine in neutral and your hips level. Allow a stretch in the right iliopsoas muscle region. Push back up with the right leg. Your back should remain totally still and your hips level as you performed the push-back. The idea is to slide your right foot back until your left leg bends at 90 degrees. Slide your right foot up to start position, pulling up with the glute of your left leg. Keeping your abs tight will help you keep balance. Finish all reps on one side and then switch sides. Perform 10-15 reps per side.

Prone hip flexor stretch: Lie prone on the floor with the involved-side knee flexed to 90 degrees. The opposite leg is straight on the floor with both ASIS pressed into the floor. Wrap a resistance band around the bent-knee ankle and grab the other end with both hands. Actively extend the hip and pull on the band so the thigh is raised off the floor. Make sure the ASIS stay in contact with the floor. Hold this for a 30-second count while performing diaphragm breathing. Perform three to five reps.

Resistance-band side walk: Place a resistance band around your ankles. Stand with your feet hip-width apart and get into a small knee-bend position. Step to the side with your left leg, then bring your right leg toward the left leg, but not all the way, so you keep some tension on the band. Continue across the room, stepping out with your left leg. Return to the other side of the room, facing the same way stepping out with your right foot. Make sure the foot doesn’t get out from under the knee. Move five steps to the right and five steps to the left. This can be repeated until felt in the gluteus medius.

Resource

  1. Based on a technique course taught by Dr. Kim Christensen.
More