Currently Browsing: Articles by Dr. Tucker

Injury with Low-Speed Collisions

by Jeffrey H. Tucker, DC, DACRB

Can pain and dysfunction develop from a low-velocity collision without attendant injury? “Low-speed” impact refers to 1-2 miles per hour and goes up to 20-25 mph. “Moderate speeds” are 25-40 mph and “high speeds” are 40 mph and over.

Jackson16 and States13 estimate that 85 percent of all neck injuries seen clinically result from automobile crashes, and of those due to such collisions, 85 percent result from rear-end impacts. Morris reported that rear-end impacts of as little as five mph can give rise to significant symptoms.17 The dynamic and vehicle factors that contribute to rear-end collision injury are:

  • vehicles involved
  • speed differential
  • vehicle weight
  • location of impact
  • direction of impact
  • head restraint location
  • seat failure
  • seat back angle
  • seat back height

Wiesel states that approximately 10 percent of the occupants of the stricken vehicle in rear-end automobile collisions will develop whiplash syndrome.10 Approximately 10-15 percent of patients suffering from cervical soft tissue injuries following motor vehicle accidents fail to achieve a functional recovery.

Emori and Horiguchi state: “Whiplash, in some cases, persists for years but usually no obvious symptoms show up with radiological or other quantitative diagnostic techniques.”9 Our present technology does not permit precise identification of deranged soft tissues.

Research quoted by White and Panjabe11 states that an eight mph rear-end collision may result in a two g force acceleration of the impacted vehicle and a five g force acceleration acting on the occupant’s head within 250 msec of impact. (One g equals an acceleration of approximately 32 ft./sec.) Car crashes happen in literally one/two eye blinks. The point is that the head and neck experience more g forces than the car in low-speed impacts.

Kenna and Murtaghsay state: “It is wrong to assume that maximum neck injury occurs in a high-speed collision; it is the slow or moderate collision that causes maximum hyperextension of the cervical spine. High-speed collisions often break the back of the seat, thus minimizing the force of hyperextension.”21

A major dilemma exists for the auto manufacturer, insurance companies, and the consumer of autos. Each would like the vehicle to provide the maximum protection for the occupant with the minimum material damage to the vehicles during a collision. Stiffer cars with spring-like rear bumpers that increase the rebound have less damage costs, however the occupant experiences an increased neck snap and the potential for greater injury. When a car gets struck from the rear by another auto, the very first thing that happens is the struck car is accelerated. The occupant of the struck care experiences higher speeds as it attempts to “catch up” with the car. Navin and Romilly state: “This relative movement of the head to the shoulder during the rebound is the likely cause of neck injuries as this is the point at which dynamic loading of the neck will be maximum.”8 They conclude: “Of major concern to researchers is the lack of structural damage present below impact speeds of 15 kmh. This indicates that the bumper system is the predominant system of energy absorption between the impact and the occupant. It was also observed that deflection of the seatback tends to pitch the occupant forward, with the shoulder displacement leading the head. This relative head to shoulder motion is the likely source of whiplash injury.”

Research has shown that high impact forces are transmitted directly to the occupant in low-speed impacts and that the vehicle does not begin to crush until impact speed exceeds 15 or 20 mph.1,13 Severy1 demonstrated a 10 mph impact produced total collapse of only 2 1/2 inches in the rear structures of the impacted vehicles. Therefore, minor property damage does not necessarily equate to minor injury. The most important question is not, “What is the damage to the vehicle?” but, “What was the acceleration to the vehicle that you were in?” Injury will occur because of the acceleration differences between the different inertial parts of the occupant’s body, especially from the person’s head, versus trunk inertial acceleration differences.

Navin and Romilly have demonstrated that, “Rear vehicle impacts between 5-12 mph indicate that some vehicles can withstand a reasonably high speed impact without significant structural damage. The resulting occupant motions are marked by a lag interval, followed by a potentially dangerous acceleration up to speeds greater than that of the vehicle.”8

Severy1 demonstrated conclusively that seemingly harmless low-speed rear-end collisions were capable of producing damaging forces to the head and neck. Severy and associates recorded head accelerations as great as 11.4 g. Most research evidence suggests that the major injuries are due to the hyperextension phase of the cervicothoracic spine.

Factors that Influence the Extent of Injury

Headrests are the best protection in rear-end collisions. However if the headrest is set too low, the head is able to roll over the top of the headrest, producing even more hyperextension.2

Emori’s experiments were to simulate relaxed necks of unexpected passengers in struck vehicles. Without a headrest, the neck extension can become almost 60 degrees, which is a potential danger limit of whiplash at collision speeds as low as two mph.9

The exact position of the head at the moment of impact is important to know. If the head is turned, the injury will be greater on the side it is turned to. When head rotation is present, the pattern of tissue injury is potentially more severe.19

A surprise collision will usually cause more injury because the ligaments will be injured more than the muscles. When a person knows they are going to be struck, they will tense up the muscles and therefore injure the muscles first. MacNab states: “In impacts up to 15 mph the right front seat passenger stands in greater danger of injury than does the driver, because the driver can brace himself to some extent by holding onto the steering wheel.”14

Common predisposing factors include degenerative joint disease and spinal stenosis. The potential for injury is increased because the neck is less resilient.

The seatback stiffness requires investigation. The harder/stiffer the seatback the less forward acceleration and therefore the less injury. The less stiffer the seatback the more forward acceleration and therefore the risk of increased injury.

Jackson states: “The belt has very little if any deterring effect on the cervical spine as the head and neck continue forward motion. Even the addition of a shoulder harness will not relieve but will only increase the forces which must be absorbed by the head and neck, although such a harness may prevent contact injuries.”12 Seat belts save lives by preventing occupants from going through the windshield, but they contribute to the neck injury.

The Office of the Chief Scientist (London), Department of Health and Social Security, had this comment regarding seat belts in 1985: “We predicted an increase in the case of two injuries: sprains of the neck and fractures of the sternum. Both were confirmed. The other apparent increase in a major injury which was not predicted was abdominal injuries of organs other than the kidney and bladder.”

Clemens and Burrow20 report that any shoulder restraint mechanism in front-end collision increases the degree of cervical flexion, with potential for injury.

The car fender or bumper is designed to avoid or reduce damage in a low-speed collision. It is not a safety device to prevent or reduce injuries to people in the car. The government requires bumpers on passenger cars to prevent damage to the car body and parts, such as headlights, tail lights, grille, hood and trunk latches, at barrier impact speeds of up to 2 1/2 mph. This is equivalent to a five mph crash into a parked vehicle.

Injuries Sustained

Myofascial structures can be stretched; asymmetric increase in muscle tension can develop, causing altered joint movement; the facets can become affected, and posture altered.

MacNab did whiplash type research with monkeys and was able to describe these injuries:3 slight muscle tears of the sternocleidomastoid ruptures; ruptures of the longus colli; retropharyngeal hematoma; esophageal hemorrhage; cervical sympathetic plexus lesion; tearing of the anterior longitudinal ligament.

Dunn and Blazer7 concluded: “The most injurious head deflection in an acceleration injury is hyperextension. Even though sustained in low-velocity, rear-end collisions, this acceleration injury can produce forces significant enough to produce musculoligamentous tears with resultant hemorrhage and even disk disruption and avulsion fractures of the vertebral bodies. In addition, the integrity of the apophyseal joints may be violated.” They also conclude that in head-on collisions (flexion injuries): “In low- velocity flexion accidents, because the chin strikes the chest when the full range of physiologic flexion has been reached, minimal damage occurs.”

Prognosis

If present, degenerative changes should be noted as they may affect the prognosis. A claim of aggravation of a known pre-existing injury may occur after a low-speed impact.

Hohl4 and Hohl and Hopp5 found that complaints of interscapular pain, upper extremity pain, and numbness carried a poor prognosis, as did findings of a sharp cervical curve reversal, or restricted motion at one level on flexion/extension radiographs. Greenfield and Ilfeld15 also noted that shoulder pain and arm and hand pain indicated slower progress toward recovery, and that if upper back pain and interscapular pain present, a longer and more intensive treatment program was needed.

Norris6 found that the presence of objective neurological signs, significant neck stiffness and muscle spasm, and/or pre-existing degenerative changes adversely affected the outcome.

Hohl did a seven year follow-up after injury of patients without previous x-ray evidence of disc disease and found that 39 percent had developed degenerative disc disease at one or more disc levels since injury.4

Discussion

We enjoy the thrill of driving bumper cars travelling at approximately 1-2 mph without a head restraint and without adequate seat belts at amusement parks. We like the feel of speedy roller coasters that whip our head and neck, and push our body to provide a sense of increased g forces. And if we should experience soreness or discomfort after these rides we have the ability to continue to go on and have fun the rest of the day. We relax and tell ourselves that it will go away. And so it could be with many of our patients involved in low-speed, low-impact collisions. The doctor must reinforce to the patient that it will go away. If the pain doesn’t go away we must be able to discuss the mechanisms of injury and substantiate the presence of injury/illness.

Insurance companies and the general population have a skeptical attitude about these types of cases. Television commercials are polluting the juries viewpoint and the public is frustrated with the cost of insurance premiums. Ask people what they think of rear-end collisions, jury awards, and attorneys. They will respond with a different value than 10-15 years ago.

We need to make sure that patients are being sincere in their complaints. Credibility on the patient’s side is very important. The issues of the low-dollar damage amount and low speed will come up. The doctor has a credibility image to maintain as well. Adjustors will look at the doctor’s records and the treatment plan; insurance companies want to see a treatment plan. The important issues are the type of treatment, the cost of treatment and the length of time. The diagnosis is not indicative of the extent of the injury. Reports to the adjustor should supply the diagnosis and prognosis. At this point it does not appear that the insurance industry cares that chiropractic can substitute for more expensive care.

The key to documentation is showing that the patient is receiving benefit from the treatment (getting pain relief and improving functional capacity). Documentation must justify the treatment for the injury. It must show that treatment was actually rendered, and substantiate the injury by detailing the subjective and objective findings on the examination; justify treatment by showing decreases in pain and suffering; increasing recovery time; decreasing the likelihood of complications; increasing the function of the person during the recovery.

References

  1. Severy DM, Mathewson JH, Bechtol CO. Controlled automobile rear- end collisions, an investigation of related engineering and medical phenomena. Can Serv Med J, 1995;11:727.
  2. Ewing C, Thomas DJ. Human head and neck response to impact acceleration. Navel Aerospace Medical Research Laboratory Monograph, #21, Aug. 1971.
  3. MacNab I. Acceleration injuries of the cervical spine. J Bone Joint Surg, 1964;46A:1797-1799.
  4. Hohl M. Soft tissue injuries of the neck in automobile accidents. J Bone Joint Surg, 1974;56A:1675-1682.
  5. Hohl M. Hoop E. Soft tissue injuries of the neck: II. Factors influencing prognosis, abstracted. Orthop Trans, 1978;2:29.
  6. Norris S. The prognosis of neck injuries resulting from rear-end vehicle collisions. J Bone Joint Surg, 1983;65:9.
  7. Dunn EJ, Blazer S. Soft tissue injuries of the lower cervical spine. Instructional course lectures, Am Academy of Ortho Surgeons, 1987;36:499-512.
  8. Navin FP, Romilly DP. An investigation into vehicle and occupancy response subjected to low-speed rear impacts. Proceedings of the Multidisciplinary Road Safety Conference VI, June 5-7, 1989, Fredericton, New Brunswick.
  9. Emori RI, Horiguchi J. Whiplash in low-speed vehicle collisions. Vehicle Crash-Worthiness and Occupant Protection in Frontal Collisions. Society of Automotive Engineers, Feb. 1990.
  10. Wiesel SW, Fetter HL, Rothman RH. Neck Pain. Charlottesville, VA. The Michie Co., 1986, pp 10-26.
  11. White AA, Panjabi MM. Clinical Biomechanics of the Spine, New York, JB Lippencott, 1978, pp 153-158.
  12. Jackson R. The Cervical Syndrome. Springfield, IL. Charles Thomas Co., 1977.
  13. States JD, Korn MW, Masengill JB. The enigma of whiplash injuries. Proceedings of the 13th Annual Conference of the Amer. Assoc. for Auto. Med., 1969.
  14. Rothman RH, Simeone, FA. The Spine, 2nd edition. W.B. Saunders Co., p. 648.
  15. Greenfield J, Ilfeld FW. Acute cervical strain: evaluation and short-term prognostic factors, Clin Orthop 122:196, 1977.
  16. Jackson R. Crashes Cause Most Neck Pain. Amer. Med. News, Dec. 5, 1966.
  17. Morris F. Do head restraints protect the neck from whiplash injuries? Archives of Emergency Medicine, 1989, 6:17-21.
  18. Rutherford W, Greenfield T, Hayes HR, Nelson JK. The medical effects of seat belt legislation in the UK. Dept. of Health and Social Security, Office of the Chief Scientist, Research Report #13, 1985.
  19. MacNab I. The “Whiplash Syndrome.” Orthop Clin North Am 1971;2:389-403.
  20. Clemens HJ, Burrow K. Experimental investigations on injury mechanisms of the cervical spine at frontal and rear-end vehicle impacts (from the German). Acta Ortho Unfall-Chir, 1972;75:116-45.
  21. Kenna C, Murtagh J. Whiplash, Australian Family Physician, June, 1987; 16:6.

The Psoas and Iliacus: Functional Testing

by Jeffrey H. Tucker, DC, DACRB

The psoas has segmental attachments posteriorly to all lumbar transverse processes, anteriorly at all lumbar vertebral bodies and to all lumbar discs except L5-S1 disc.1,2 Fibers that attach on the transverse processes are named the posterior fasciculi fibers. They range from approximately 3-5 cm in length. The fascicles that attach to the discs and bodies are called anterior. They are approximately 3-8 cm in length. The fascicles run inferolaterally to reach a central tendon, where they descend over the pelvic brim as it passes deep into the inguinal ligament and anterior to the capsule of the hip joint, sharing a common insertion with iliacus to the lesser trochanter of the femur.3 The tendon is separated from the pubis and the hip joint by a subtendinous iliac bursa. Along the pelvic brim, the lateral fibers of the iliacus and the fibers of the psoas come together. This is referred to as the conjoint tendon of the psoas major and the iliacus. Because the psoas muscle attaches to the anterior portion of the transverse processes of all lumbar vertebra and intervertebral discs, it can contribute to mechanical lumbo-pelvic-hip dysfunction and pain.

Proximally, fibers of the diaphragm and psoas are inter-related. The diaphragm’s medial arcuate ligament is a tendinous arch in the fascia of the psoas major. Distally, the psoas fascia is continuous with the pelvic floor fascia, especially the pubococcygeus.2

Based on his anatomic studies, Bogduk does not believe the attachment of the psoas muscle has a long enough level to act as a prime flexor of the lumbar spine. Bogduk’s analysis indicates that in the standing erect posture the psoas exerts an extensor moment on the upper lumbar spine and a flexor moment on the lower segments. The major forces acting on the lumbar spine are compression and anterior shear forces. The psoas has a primary stability role at the lumbar spine for axial compression and it has minimal movement function on the lumbar spine.4

Local Stability Function Local Stability Dysfunction
Muscle stiffness to control segmental translation.

No or minimal length change in function movements.

Anticipatory recruitment prior to functional loading provides protective stiffness.

Activity is continuous and independent of the direction of movement.

Uncontrolled segmental translation.

Segmental change within cross-sectional area.

Altered pattern of low threshold recruitment.

Motor recruitment timing deficit.

In 1998, Dangaria and Naesh demonstrated that there is a significant decrease in the cross-sectional area of the psoas at a segmental level in patients with sciatica. The study determined there is an association between wasting of psoas and multifidus muscles observed on MRI scans in patients presenting with unilateral low back pain.

They took 50 consecutive patients presenting to a back pain triage clinic with unilateral low back pain lasting more than 12 weeks. They found the cross-section area of the psoas major was ipsilaterally decreased in unilateral lumbar-disc herniation. The reduction in the cross-section area (CSA) is positively correlated with the duration of continuous sciatica, rating of pain, self-reported function and the presence of neural compression.7

The results and data analysis compared the CSA between the symptomatic and asymptomatic sides. There was a statistically significant difference in the CSA between the sides. There was a positive correlation between the percentage decrease in CSA of the psoas on the affected side and with the rating of pain, reported nerve root compression and the duration of symptoms. Hodges also had reported on an association between decrease in the CSA of multifidus and the duration of symptoms.

Atrophy of multifidus has been used as one of the rationales for spine-stabilization exercises. They concluded the evidence of coexisting atrophy of the psoas and multifidus suggests that a future area for study should be selective exercise training of the psoas.

Exercises: Clients who do not suffer from an isolated psoas or iliacus muscle with a local stability dysfunction (meaning the muscle is allowing joint instability) can perform the following bodyweight exercises:

  • Perform sit-ups with the hips and knees flexed. The iliopsoas participates as strongly during sit-ups with the hips and knees flexed as when they are extended.
  • Perform push-ups. The psoas is activated more than the abdominals during push-ups.
  • Seated hip flexion. Maximum activity of the psoas occurs with resisted hip flexion. This maneuver can be performed with the use of resistance bands (seated or supine).

Also, make sure the client maintains a neutral lumbar spine. However, if compression and shear are the sources of your client’s pain, avoidance of these three exercises is necessary. Selective exercise training, described as low-load exercises would be indicated.

Yoshio, et al., concluded that the primary role of the psoas major was for lumbar stability and that the psoas major contributed very little to hip flexion. He explained that the primary role for the psoas major is at the hip for stability. This was achieved through maintaining the femoral head in the acetabulum.8 The psoas can be said to be clinically deficient if it fails to segmentally hold the vertebrae in place at the level of pain in patients who have segmental lumbar dysfunction (hypermobile segments).

Low-load exercise facilitation of psoas is directed to the spinal neutral postures and segmental axial compression and spinal rotatory control, not hip flexion movements. Specific segmental psoas facilitation will improve lumbar segmental control.5

Action of psoas: The local stability role of psoas is to longitudinally pull the head of the femur into the acetabulum, with the spine fixed and supported in neutral alignment to produce axial compression along its line of pull.

Training of psoas: This can be practiced side-lying, incline sitting, supine, prone or standing; for example, while supine with the lumbar lordosis passively supported in neutral by the patient’s hands, a folded towel and the legs comfortably apart. If side-lying (with the dysfunctional side up), both legs are flexed with the spine and pelvis in neutral alignment in terms of tilt and rotation. The top leg is supported horizontal, with the spine, pelvis and upper trunk all neutral. Have the client shorten the leg or “pull the hip into the socket” or “suck the hip into the socket.” This will create a barely perceptible movement and yet will be felt by the client. This can be performed for 10-second holds and 10 repetitions.

Testing of the iliacus and hip capsule: Have the client stand against a wall, with heels (feet) apart, and shoulders and head touching the wall. Normal is the ability to posterior tilt to touch the small of the back against the wall. If the client cannot posterior tilt by flattening their back onto the wall with the feet apart and the hips and knees straight, but can do so with knees bent and the hip flexed, the restriction could be shortened iliacus or the anterior hip capsule. By bending the knees and unlocking the hips, this unloads the tension from the iliacus and the anterior hip capsule and allows the pelvis to posterior tilt.

Iliacus/hip capsule correction: The abdominal and gluteal muscles are contracted to posterior tilt the pelvis and flatten the back onto the wall. While maintaining the posterior tilt and flat-back position, the knees are slowly straightened (hips extended) to slide the body up the wall.

At the point that the back cannot be held on the wall, cease sliding up and actively restabilize onto the wall. Hold this position for 20 to 30 seconds, and repeat the maneuver three to five times. To isolate the right or left side of a weak iliacus muscle, ask the client to raise one leg at a time while maintaining a flat back against the wall. If an asymmetry exists, spend time on the weaker side.

Clinical application to this information is that the “overhead bilateral arm pull” test, as used in the Sacro-Occipital Technique (SOT) to test for a short or tight psoas, does not often correlate to the modified Thomas test.

Hip flexor muscle-length tests are performed by using the modified Thomas test.

Test: Patient is supine, with buttocks at the end of the table. The patient flexes one knee and holds the knee to the chest with both arms. The free leg hangs down to the floor. The position of the lumbar spine is flat on the table, not arching into extension or flexion.

Observe: If the patient has tight hip flexors, the thigh/hip will rest in some flexion or the lumbar spine will extend to allow the leg to rest on the bed. The modified Thomas test assesses the hip flexors, rectus femoris, quads and ITB muscle lengths. Patient is in the same position as the Thomas test, but should start by standing at the end of the bed and roll back onto it with one knee held to the chest while the other leg dangles off the end of the bed. Check that the lumbar spine is not extended.

Observe the degree of the hip flexion. If above neutral, either hip flexors or rectus femoris are tight. To differentiate, ask the patient to extend their knee. If it falls into more hip extension, the rectus femoris is tight. Also observe for increased tautness in the rectus femoris.

Check relative position of abduction/adduction at the hip and observe lateral structures. The thigh should lie in the neutral position, as if the client was standing. An abducted position indicates that ITB could be tight. On visual analysis, the ITB may present a groove in the lateral thigh. This would support overactive/tight ITB findings.

Check the knee flexion. Ask the patient to flex their knee further. A normal muscle length in quads will allow 90 degrees or more of knee flexion in this position. Watch for compensatory hip flexion. Tibial position also can indicate tightness in the ITB, especially in the distal components. It will be in external rotation if tight. Check the position of the tibial tubercle.

Another take-home value from this article: The supine straight-leg raise used for nerve tension signs also is affected by iliopsoas activity.

Test: Patient performs an active straight-leg raise test (utilizing hip-flexor muscles). Positive for neural tension is radicular pain into the leg before 60 degrees of hip flexion.

Retest: At the point of symptoms, the therapist supports the weight of the patient’s lower extremity while instructing the patient to totally relax their musculature. If the symptoms are alleviated or eliminated, this finding suggests the problem is the effect of shear or compression on the spine from the contraction of the hip flexors and not a true entrapment of the nerve (tethered nerve).

References

  1. Bogduk N, Pearcy M, Hadfield G. Anatomy and biomechanics of psoas major. Clinical Biomechanics, 1992;7:109-19.
  2. Gibbons SGT. A review of the anatomy, physiology and function of psoas major: A new model of stability. Proceedings of: The Tragic Hip: Trouble in the Lower Quadrant. 11th Annual National Orthopedic Symposium. Halifax, Canada. Nov 6-7, 1999.
  3. Gibbons SGT. The model of psoas major stability function. Proceedings of 1st International Conference on Movement Dysfunction. Edinburgh, Scotland. Sept 21-23, 2001.
  4. Bogduk N, Pearcy MJ, Hadfield G. Anatomy and biomechanics of psoas major. Clin Biomech, 1992;7:109-19.
  5. Review course notes: Comerford and Mottram, 2001.
  6. Barker KL, Shamley DR, Jackson D. Changes in the cross-sectional area of multifidus and psoas in patients with unilateral back pain: the relationship to pain and disability. Spine, Nov. 15, 2004;29(22):E515-9.
  7. Dangaria TR, Naesh O. Changes in cross-sectional area of psoas major muscle in unilateral sciatica caused by disc herniation. Spine, 1998;23(8):928-31.
  8. Yoshio M, Murakami G, Sato T, et al. The function of the psoas major muscle: passive kinetics and morphological studies using donated cadavers. J Orthop Sci, 2002;7:199-207.
  9. Christensen K. Neuromobilization Course, May 2007.

Tensor Fascia Latae and Iliotibial Band – Functional Evaluation

by Jeffrey H. Tucker, DC, DACRB

The tensor fascia latae (TFL) acts through the iliotibial tract by pulling it superiorly and anteriorly. It assists in flexing, medial rotation and abduction of the hip and extension of the knee joint. The TFL arises from the anterior part of the outer lip of the iliac crest, the lateral aspect of the anterior superior iliac spine and the upper part of the anterior border of the iliac wing. Keep in mind that in addition to arising from the iliac crest, the iliotibial band (ITB) attaches into the posterior gluteus maximus muscle in the back. When the TFL and gluteal muscles contract, they increase tension on the band. Often, one muscle dominates the movement pattern causing an imbalance to occur, which may lead to injury. When a muscle imbalance exists, some muscles are short (overactive) and others are long (underactive).1-7

Muscle length imbalance (or muscle weakness) is a common occurrence that occurs in the synergistic muscles in the hip:

Flexors: The TFL becomes short and the iliopsoas becomes a long and/or weak muscle.

Hip abductors: The TFL becomes short; the posterior gluteus medius becomes long (and/or weak).

The difference in the length of two synergistic muscles contributes to compensatory joint motion and the development of movement impairment. The weak muscle (iliopsoas or posterior gluteus medius) usually is associated with pain in the muscle belly, which is noted upon contraction or with palpation. The long muscle (iliopsoas or posterior gluteus medius) synergist will cause the pain to usually occur during hip-joint motion because the pain generator is the faulty control of the head of the femur in the acetabulum. The gluteus medius is the primary frontal-plane stabilizer of the hip. When it’s underactive, the TFL, adductor and the opposite quadratus lumborum (QL) become overactive.1

Shortened muscles over time can become structurally short and mechanically incapable of lengthening to an appropriate level.1-7 Long muscles can become structurally long and incapable of shortening to an appropriate level.5,6 When muscles are incapable of firing correctly, compensation occurs, and this will alter joint motion from its normal path.

If you have been performing the overhead squat maneuver (described in previous articles), you will notice that the knees can drift inward or outward on the descent. The TFL is implicated as being overactive in both the knee moving inward and outward, which may seem to be a contradicting statement. The movement at the knee depends if the foot is in the open or closed chain. In the open chain, the TFL is a major abductor of the femur and is noted as being overactive when the gluteus medius and/or maximus are underactive.1,13,14 The gluteus medius and/or maximus have been shown to be prone to underactivity when the lack of activity leads to synergistic dominance or overactivity of other muscles.1,9,14 Overactivity (synergistic dominance) of the TFL, piriformis and biceps femoris can all stem from or lead to underactivity of the gluteus medius/maximus because they are each a functional synergists to the gluteal complex.1,9,14

In the closed chain, the knee could move inward if the TFL is overactive doing the squat evaluation. The TFL (and the soleus, lateral gastrocnemius, biceps femoris) attaches to the lower leg and has the ability to produce external rotation of the lower leg.13,14 The TFL (and the adductor complex, biceps femoris [short head], and lateral gastrocnemius) affects either the femur and/or the lower leg. When overactive, these muscles can cause altered knee position.14 In conjunction, the medial hamstrings (particularly at the knee), gracilis, popliteus, medial gastrocnemius, and the gluteus medius and/or maximus are muscles which, when underactive, will allow the femur to adduct (internally rotate) and/or the lower leg to abduct (externally rotate).14

The TFL (and biceps femoris [short head] and lateral gastrocnemius) crosses the knee joint (tibiofemoral joint) laterally. When overactive, as compared to the medial structures, it laterally pulls the femur and lower leg closer together in the frontal and transverse planes.14 Without adequate medial support, the knee is virtually pushed inward, resulting in the “knee-inward” compensation during the squat assessment.

The TFL, bicep femoris (long head), piriformis, gluteus minimus and medius all have an effect on the femur and when overactive can cause the knees to move outward during the overhead squat assessment.14

Common Stresses

Intrinsic Factors/Causes of TFL-ITBS

  1. Tightness in the TFL-ITBS. This is detected by performing the modified Ober’s test. The client is positioned in side-lying, with the unaffected side down. The pelvis and spine in neutral alignment and the bottom leg flexed for support. The uppermost leg is extended (although the leg may be flexed as much as 10 to 15 degrees, and the test still will be valid) and needs to be above the horizontal. The hip is laterally rotated and extended, as far as no lumbar extension occurs. Tell the client to actively flatten the waist towards the floor and actively hold the leg in slight abduction and lateral rotation. The knee is not locked and the foot is relaxed. The client is then instructed to slowly lower the leg towards the floor until the iliotibial band hangs on the greater trochanter and cannot lower any further. The key to an accurate test is not letting the pelvis move, either into lateral tilt, anterior tilt or rotation. As the leg lowers, the hip should not flex or medially rotate. It’s essential to maintain the laterally rotated position of the hip. Ideally, the leg should lower into at least 10 to 15 degrees adduction (approximately two to three inches above the floor for females and one to two inches above the floor for males) without loss of proximal control of the pelvis or hip. The iliotibial band lacks extensibility if the leg does not adduct sufficiently.
  2. Myofascial restrictions in the hip and thigh musculature, which will increase tension on the band. The iliotibial band is not sensitive to mechanical stretch. The iliotibial band only becomes sensitive to mechanical stretch in the presence of inflammatory pathology. The client will describe fascial inflammation as “burning outer-thigh pain.” Manual palpation can detect tension in the band. Visual postural analysis reveals a deep groove along the iliotibial band when it’s tight. With the client in the Modified Thomas test position, the tensor fascia latae is tested by adducting the horizontal thigh until the pelvis moves. This should be 15 to 20 degrees. Iliotibial band tightness is confirmed by restricted passive extension/adduction of the thigh with the knee flexed to 90 degrees.
  3. Weakness in hip abductors (common in distance runners).
  4. Weakness or poor control of knee muscles.
  5. Dominance of anterior hip muscles, (TFL) over posterior hip muscles (gluts). Tight hip flexors cause the pelvis to rotate while walking. This leads to one side of the abdominals and one side of the gluteus medius shutting down.
  6. Excessively flat feet or high arches. Poor instep strength is a cause of Achilles tendon inflammation and chronic knee pain from the iliotibial band attachment at the knee.
  7. Bow legs or knock-knees.
  8. Leg-length inequality.
  9. Limited ankle ROM. During the overhead squat if the feet/toes externally rotate, this is usually associated with decreased ankle dorsiflexion and lateral gastrocnemius muscle tightness. During the overhead squat, when you observe the feet turn out, you likely may observe knee valgus (inward knee movement) due to increased hip adduction muscle activity. This must be resolved through mobilization, inhibition and muscle-lengthening procedures before moving up the kinetic chain. The biceps femoris (short head) and TFL also can cause the lower leg to abduct which can perpetuate eversion of the foot/ankle.14

Extrinsic Factors/Causes of TFL-ITBS

  1. Training errors (e.g. excessive mileage, sudden increase in mileage, sudden increase in intensity of training, too much hill work, running on crowned roads).
  2. Worn-out running shoes. Top runners replace their running shoes every 250 to 300 miles. I’ll see clients who wear shoes up to 500-plus miles.
  3. Overstriding.
  4. Failing to warm up or cool down.

Functional Testing of the TFL

Have the client stand two to three inches from a wall with their feet together, with the sacrum and thoracic spine on the wall. The client should be able to contract the abdominal and gluteal muscles to flatten the lumbar spine onto the wall and hold it there. This test reveals the ability to self-correct a lumbar lordosis. If the client can’t posterior tilt the pelvis to flatten back on the wall, then the tensor fascia latae (TFL) and iliotibial band could be the cause. Have the client repeat the test with their feet shoulder-width apart. This unloads the TFL and IT band and enables the client to posterior tilt the pelvis to flatten back on to the wall. To correct this dysfunction, have the client repeat the test procedure with their feet shoulder-width apart, actively posterior tilting the pelvis and holding this position for 20 to 30 seconds and repeat the stretch three to five times. Over time, gradually bring the feet closer together. When the client can do it with their feet together have them rotate the hips out while actively posterior tilting the pelvis. A unilateral shortness of the TFL muscle can contribute to sacroiliac joint problems and restrict external hip rotation and extension. In terms of performance, it affects the swing phase of the leg during sprinting, because it causes the foot to swing out at toe-off and the foot to go medial and pronate at touchdown. This can be the cause of shin splints because of the rapid deceleration.

Treatment and Rehabilitation of TFL-ITB Syndrome:

Acute Phase

  1. Ice.
  2. Anti-inflammatory diet and supplements to reduce inflammation.
  3. Activity modification. Stop the perpetuating factors that caused the irritation.
  4. Sleep with a pillow between the knees to decrease tension on the ITB.

Subacute Phase

  1. Massage, myofascial release techniques.
  2. Address tight areas and trigger points. A foam roll is best for this.
  3. Stretch the TFL-ITBS. The Modified Thomas maneuver is one way to manually stretch the TFL-ITBS. I prefer teaching clients the “standing self-stretch” method. For the right TFL-ITBS, stand in a split-leg stance with the right leg behind the left in a full stride stance. Externally rotate the right foot, leg and hip and maintain weight on the right foot. Raise the right arm straight overhead with the palm facing forward. Place the left hand on the left iliac crest and push with enough pressure from left to right to feel the stretch. Stand with a “tall spine” and slightly rotate the left shoulder anterior. You may need to slightly extend your torso to gain a greater stretch sensation. Hold this pose for 20-30 seconds and repeat this maneuver two to three times. Performing a gluteal bridge with the toes raised with adduction gets a stretch to the TFL as well.

Strength and Stability Phase

  1. Bridging with single-leg raise. Repeat the movement up and down. Build up to one to two minutes of slow continuous movement.
  2. Clam shell. The aim is to strengthen the gluteus medius. Lie on your side with your hips stacked one on top of the other and your legs together with the heels connected. Extend your lower arm, palm up, so that you can rest your head. Now angle your stacked thighs forward 30 to 45 degrees, without changing the position of your spine, which must be still in a straight line from your head to your tail. From this position, pre-contract the gluteus medius and lift the top leg. In the beginning, allow the heels to stay in contact. Do not let the pelvis rotate forward or backward. Lift the thigh up from the hip to its maximum height. Hold it up for 10 seconds and slowly bring it back down. Repeat this 10 times.
  3. Standing with an elastic band around the knees, perform a single-leg/thigh abduction (one at a time) in a semi-squat position. Keep the big toe down on the ground. Build up to one to two minutes of continuous movement.
  4. Step downs. Step down from a 2” to 6” stable step very slowly.

References

  1. Sahrmann SA. Diagnosis and Treatment of Movement Impairment Syndromes. St. Louis: Mosby, Inc., 2002.
  2. Liebenson C. Integrated rehabilitation into chiropractic practice (blending active and passive care). In: Liebenson C, Ed. Rehabilitation of the Spine. Baltimore: Williams & Wilkins, 1996:13-43.
  3. Comerford MJ, Mottram SL. Movement and stability dysfunction – contemporary developments. Man Ther, 2001;6(1):15-20.
  4. Panjabi MM. The stabilizing system of the spine. Part I: Function, dysfunction, adaptation, and enhancement. J Spinal Disord, 1992;5(4):383-9.
  5. Kendall FP, McCreary EK, Provance PG, et al. Muscles: Testing and Function, with Posture and Pain. 5th ed. Baltimore: Lippincott Williams & Wilkins, 2005.
  6. Janda V. Evaluation of muscle imbalances. In: Liebenson C, Ed. Rehabilitation of the Spine. Baltimore: Williams & Wilkins, 1996:97-112.
  7. Sahrmann SA. Posture and muscle imbalance. Faulty lumbar pelvic alignments. Phys Ther, 1987;67:1840-4.
  8. Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. J Orthop Sports Phys Ther, 2003;33(11):639-46.
  9. Janda V. Muscles and motor control in low back pain: assessment and management. In: Twomey LT, Ed. Physical Therapy of the Low Back. Edinburgh: Churchill Livingstone, 1987:253-78.
  10. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: International Perspectives in Physical Therapy VIII. Edinburgh: Churchill Livingstone, 1993:83-91.
  11. Edgerton VR, Wolf SL, Levendowski DJ, Roy RR. Theoretical basis for patterning EMG amplitudes to assess muscle dysfunction. Med Sci Sports Exerc, 1996;28(6):744-51.
  12. Richardson C, Hides J. Closed chain segmental control. In: Richardson C, Hodges P, Hides J, Eds. Therapeutic Exercise for Lumbopelvic Stabilization. A Motor-Control Approach for the Treatment and Prevention of Low Back Pain. Edinburgh: Churchill Livingstone, 2004:221-32.
  13. Neumann DA. Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation. St. Louis: Mosby, 2002.
  14. Vasilyeva LF, Lewit K. Diagnosis of muscular dysfunction by inspection. In: Liebenson C, Ed. Rehabilitation of the Spine. Baltimore: Williams &Wilkins, 1996:113-42.
  15. Fry AC, Smith JC, Schilling BK. Effect of knee position on hip and knee torques during the barbell squat. J Strength Cond Res, 2003;17(4):629–33. Exercise Specialist

Advanced Functional Exercises For the Hips and Low Back

by Jeffrey H. Tucker, DC, DACRB

*This article was submitted to DC on 1-20-07. Accepted for publication 2-27-07. Printed May 2007.

Movement assessments have become a clear and comprehensive evaluation and approach to my Chiropractic therapy. It begins with me looking at each clients standing posture. I then ask my client to perform a series of postures. You know this portion as ‘range of motion’ evaluation. For example, I say to the client, “Bring your chin to your chest”, etc., or “bend forward to touch your fingers to the floor” or “raise both arms over your head” bla bla bla! It is old school, but I realize I need to document how far they move and if any sensations present themselves. I have become a keen observer of these movements, one who is not just interested in how far they move, but more interested in the way they move and what there movement pattern can tell me. The evaluation continues with a series of dynamic and static postures to observe how the muscles and joints move. Through this process I generate a sequence of home exercise programs for my clients. Please realize, the movement assessments can be performed prior to any hands on work that you do, or the assessments can conclude with a mobilization or manipulation that you feel is necessary.

If you have read my previous articles you will know that I start with the squat assessment. Observe the client perform a squat several times. Simple say “Let me see you do a squat with your arms out in front of you.” The benchmarks that I look for on this evaluation are that the:

  1. Upper torso is parallel with the tibia or toward vertical (back is relatively upright).
  2. Femur below horizontal.
  3. Knees aligned over feet.
  4. Toes point forward.
  5. Knees don’t turn in.

If they cannot accomplish the above criteria I start the correction process with the following training: I call this the supine120 degree knee to chest maneuver. Client lays supine in the 90/90 position. The knees are over the hips and the legs are parallel to the floor. Doctor stands at the feet of the client and uses a knife edge contact along the clients ankle crease. The Doctor resists at the ankle crease while the client is instructed to “pull your knees to your chest.” The Doctor allows the client to move into a knee to chest position. The doctor is providing resistance, not overpowering the client. The client’s lumbar region should remain in the neutral spine. Instruct the client to focus using the lower abdominals, especially the area slightly above and below the inguinal region. Allow the hips to get to at least 120 degrees. This maneuver is a great way to get clients to re-awaken this area. Bring awareness of tightness to this area while you tell the client to release tension or resistance in other areas such as the neck or shoulders that are not needed for this maneuver. Repeat this maneuver as many times to client tolerance.

The next progression is a pose called ‘Find your stance’. This is used as a foundation of all standing postures and movements. I want this to become the natural way to stand. It cultivates a sense of strength and stability. Begin with your feet (shoes off) between your hips and shoulders – go with what feels natural and comfortable. Slightly angle your feet outwards with your weight evenly spread through the balls, lateral edge and heel. Avoid your arches collapsing inwards. Try to feel the medial and longitudinal arches lift up.

Assisted Squats: Doctor and client face each other. ‘Find your stance’, or spread feet to shoulder width or slightly wider if needed; client holds arms and hands out in front of there body; Doctor holds hands with client and assists client to squat. The command is “pull your butt down.” The Doctor is providing assistance so the client doesn’t fall down. However, the client may fall to the floor the first or second time and that is perfectly normal and O.K. to do. Simple get back up and attempt it again. The idea is to allow them to go as deep as possible. Get the client to engage the groin crease muscles to pull them down. The goal of doing this squat is to reach back with the buttocks and down, ex. Sit back on a chair with control. If you have a rope or Theraband (at least the strength of a black theraband), you can wrap it around the clients back and underarms while you hold the ends in the front of the client and ask then to “sit down against” that resistance. Doctor coaches the client to keep the back straight, in this case as vertical as possible. FIGURE 1 Rubber tubing under the arm pits and you assist client to sit down against this resistance. The knee should not bow inward.

“Pull the hips out of the socket” routine to squat. This maneuver requires two assistant partners (the doctor plus an assistant). The client is instructed to squat down in a wider than shoulder stance. The Doctor is to the left of the client and the assistant on the right side. Each assistant places one flat hand behind the posterior leg just below the knee crease. The other hand is placed in the inguinal fossa/ligament crease with a knife edge contact. Assistants use enough pressure to guide the client into a deeper squat. Ask the client to feel like they are pulling the hips out of the socket as they descend. This allows the client to understand and feel the proper joints and muscles to use to accomplish this squat. Allow the client to learn in a wide stance and go as low as they can. As they improve strength they can get into a more narrow stance. Less core muscle is required in a wide stance than a narrow stance. Repeat this maneuver several times. Do a simple test on yourself. Stand in a wide stance and go narrower and narrower until you are in a one legged stance. Feel how the core is participating. Eventually we will get clients to have there feet closer and closer together and this will demand greater core strength.

Right after this maneuver, it will help your client if the Doctor rubs his/her index fingers along the spinous processes while the client does several more squats. This is performed starting at approximately the middle of the back with both index fingers. At the same time rub one finger headward and the other caudal along the spinous process while the client squats down and up. While you rub the spine, instruct the client to stay in a “tall spine” posture. They need to imagine creating more room in the hip socket. Tell the client to think of one thing and only one thing on the way up and that is “gluteals.” You don’t need to suck the stomach in if you elongate the spine, it will automatically come in if they are working to resist extension.

Squat against the wall. This is such a new take on the old school method of a wall squat. Once a person can accomplish the “static wall squat” also known as the “wall sit”, “wall chair,” “airbench” or “back against the ball squat” for one minute, they are ready for this maneuver. Find the distance away from the wall so that when you squat down your sacrum stays in contact with the wall. The key is to keep the sacrum touching the wall. Squat down with arms on the inside of the thighs until the elbows can push against the inner thighs. Put your hands in a prayer pose and push the elbows against the inner thighs. Pry the hips apart as you wiggle side to side going lower and lower. Continue this gentle rocking side to side and attempt to go lower and lower opening the hips. You should feel this in the most proximal attachments of the adductor muscles and hamstrings. Hold this pose for as long as you can and then concentrate on getting back up using the gluteals and keeping the sacrum in contact with the wall. Try this maneuver several times. One minute in this pose really gets you feeling warm. Attempt this with a narrow stance compared to when you are away from the wall. The next progression is to repeat the squat away from the wall.

PIVOTS: These help open the hips. Standing with your feet more than 3 feet apart, with outstretched arms (abduction) to your sides away from the body (the feet should be under the wrists distance). The feet will need to be angled slightly outward approximately 15 degrees. Keep the torso facing forward. Lunge gentle to the left until your knee is bent in a right angle above your left foot. Lengthen the spine upward (“tall spine” concept). Move side to side going more and more lateral (lower). The opposing forces of your legs provide balanced stability. Don’t lean the body towards the bent knee, try to keep the torso upright as much as possible. Imagine the hands pulling further side to side. Allow the sitting bone to be pulled backwards. The legs, both pushing forwards and pulling backwards, allow the hip to hinge and become stable at the same time, two opposing forces balancing one another. Shoulder blades should be kept down.

I recommend clients practice these maneuvers daily. I want my clients to observe subtle changes in posture, decreased pain, increased range of motion, feelings of stability, and a greater capacity for work and sport. As individuals vary in strength, flexibility, and coordination so the practice of functional exercises will be unique to each individual. Using progressive movement as assessments in your practice will tell you where the client is strong or weak, symmetrical or asymmetrical, balanced or imbalanced, coordinated or incoordinated, and which areas need more practice.

References

  1. Bergmark A 1989 Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia 230(60):20-24.
  2. Caterisano A, Moss RF, Pellinger TK, Woodruff K, Lewis VC, Booth W, Khadra T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J Strength Cond Res 2002 Aug; 16(30: 428-32
  3. Comerford M 2003 and 2006 Lumbo-pelvic Stability. Course notes. Copyright Comerford.
  4. Tsatsouline, Pavel 2007 Stretch Course. Copyright Tsatsouline.
  5. Vermeil A 2005 Sports & Fitness. Course notes. Copyright Vermeil.
  6. All the coaches, sports medicine, and sports scientists who have shared their knowledge with me.

Squats: A Functional Assessment of Movement

by Jeffrey H. Tucker, DC, DACRB

Editor’s note: The following article expands upon concepts introduced in “Overhead Deep Squats: Understanding Movement and Function,” which appeared in the Sept. 28, 2006 issue of DC.

What do you do when your patient with musculoskeletal pain gets 80 percent better and progress seems to be stalled? What’s missing to help this patient gain further progress and relief? The answer is in the human movement system. What information are we missing that will allow us to evaluate the human movement system? We can look at how the kinetic chain operates as an integrated functional unit. We need to take a closer look at what our muscles do when we move in everyday life. Functional movements are multidimensional and multiplanar in nature. I find that the deep overhead squat is a useful functional biomechanical analysis.

Current concepts in human movement science provide a useful framework to classify muscle function. We have two distinct yet interdependent muscle systems: the stabilization system (stabilizers or local muscles) and the movement system (mobilizers or global muscles). The local and global muscle systems must integrate for efficient, normal function. Neither system in isolation can control the functional stability of body motion segments. In the presence of chronic or recurrent musculoskeletal pain, patients employ strategies or patterns of muscle recruitment that are normally reserved for high-load function. Pain and pathology do not have to be present concurrently with local muscle dysfunction.

In the presence of pathology and/or pain, a variety of different dysfunctions may present (related to the weak link) in an individual’s integrated stability system. Identifying the dysfunction is a priority of treatment. Musculoskeletal pathology can heal and the symptoms may subside; however, the dysfunction does not always automatically return to a normal baseline. The clinical challenge is how to identify the weak link. Commonly accepted methods of identifying the weak link include posture analysis, gait analysis, flexibility assessment, neuromuscular assessment, single-leg balance excursion, multiplanar lunge test, multiplanar step-up test, push-up test, multiplanar vertical jump/hop, multiplanar horizontal jump/hop, shark skill test, multiplanar cone jump/hop test, and speed tests. Other functional tests to assess core stability, strength, and sequencing include the hurdle step and the wall sit with overhead reach. We can divide these assessments for stability and sequencing into static tests, such as drawing-in maneuvers, plank postures, and holding postures in different planes; and dynamic tests, such as Janda’s movement patterns. The important thing is to not take out the static tests, but to add dynamic testing to understand the human movement system!

As mentioned in my previous article, the overhead deep squat is a valuable dynamic assessment and exercise. If you wish to exercise the glutes, a full-depth squat is highly recommended. I start my evaluation by saying to the patient, “Just do a squat for me” or “Squat down for me.” Observe the patient’s natural or normal pattern of movement. Note the feet, knees, hips (lumbar spine), shoulders and the head while the patient performs the squat. After I observe several squats, I ask the patient to squat down while holding the dowel or a barbell over their head. Both elbows should be in the extended position.

To reiterate, the ideal criteria for a well-performed overhead deep squat are as follows:

  1. upper torso parallel with the tibia or toward vertical;
  2. femur below horizontal;
  3. knees aligned over feet;
  4. dowel aligned over feet;
  5. toes pointed forward;
  6. knees not turned in or out.

Observe: The foot turns outward (externally rotates) while the patient descends. Relate: This implicates a short soleus and gastrocnemius; and long posterior tibialis and medial gastrocnemius. Assess: If the there is excessive outward foot rotation and the hip adducts and/or internally rotates during the descent and/or ascent, this indicates restricted adductors. Rehab solution: Mobilize the external hip rotators; have the patient squat with a spacer between the knees. Place a foam roll or a ball between the patient’s knees and have them squeeze the object as they squat. The size of the ball or roll should place the knees approximately shoulder-width apart.

The question often comes up, “Should the knees go over the toes?” The answer is not that it is necessarily wrong, but that it tends to be the way weak people squat. Weak people will exhaust ankle range of motion first and then begin to flex the knee. This results in excessive knee angles or hitting 90 degrees sooner. Think 4:1 knee-to-ankle movement: 4 degrees of knee movement for every 1 degree of ankle movement. If a patient experiences knee pain while doing a squat, they do not necessarily have to be discouraged from performing them. Teach the movement so they are doing the proper technique, loading the correct muscles and joints and not overloading the knees.

The rehab regression for knee pain while squatting is to perform the “airbench” exercise. Have the patient stand against a wall with their feet facing straight ahead; their hips, upper back and head should be against the wall. The patient should walk their feet away from the wall approximately one foot-length; bend their knees and start sliding down the wall until the knees cover the toes as they look down at their feet. Instruct the patient to hold this position and lift the toes upward to keep the weight in their heels; the lower back should be flush up against the wall. Make sure they hold this pose for one to two minutes.

If you have a patient whose chief complaint is low back pain, yet they can do the deep overhead squat and achieve the benchmark of having the upper torso parallel with the tibia or toward the vertical and the femur below horizontal – but the foot flattens, turns outward and the hip abducts – they must stretch the gastrocsoleus complex for improvement within the kinetic chain. This patient can use the overhead deep squat as therapy to correct the tightness in the calf. For rehab, have the patient perform squats with a 1- to 2-inch board under the heels while squatting. Gradually (over many weeks) lower the board until the patient can achieve the benchmark of keeping the feet flat on the ground. Squat repetitions will stretch the tight tissue out.

A method to help stretch tight tissue is postfacilitation technique (PFS) over the gastrocsoleus complex. This is indicated for chronically shortened muscles. The patient performs a maximal contraction with the tight muscle from a midrange position. On relaxation, the doctor quickly stretches the muscle, taking out all the slack. The exact steps for PFS are:

    1. apply strong force against resistance for approximately seven to 10 seconds;
    2. instruct the patient to relax immediately;
    3. elongate the muscle fast and maintain muscle in stretched position (10 to 15 seconds);
    4. wait approximately 20 seconds before the next resistance, allowing the muscle to regain normal irritability threshold;
    5. repeat three to five times.

Note: Never stretch if the patient is unable to relax.

A question that often comes up in rehab is, “What should this patient do first, stabilize or mobilize?” Both have significant positive clinical benefits, and it is often advantageous to do both at the same time. The overhead deep squat allows the body to integrate both stability and mobility into function.

If your patient does not meet the benchmark criteria for the overhead deep squat evaluation, you should ask yourself, “Do they need mobilization or stabilization to improve the movement pattern?” The following functional knee-to-chest test will help you sort out this question. Have your patient lie down in the supine position and ask them to “bring the knees to the chest.” If they can bring the knees to the chest and maintain a flat back on the floor, they do not have a mobility problem. If you stood them upright on their feet while in the knee-chest position, they should be in the ideal posture for the squat.

Observe: Patient supine – raises arms overhead and performs knee-to-chest. Assess and relate: If the patient has increased ROM, they can do a full squat. It’s not a ROM issue. Retest: Challenge the patient for stability versus mobility. Stability is reliably tested under low-load situations. Patient position: Supine; perform bilateral knee-to-chest. Doctor notes the distance and location of the thighs on the torso. Patient’s arms are outstretched in front of the body. The practitioner resists bilateral arm flexion. Reassess: Can the patient bring the knees closer to the chest?

Indicates: Increased ROM or decreased pain indicates patient cannot perform the deep overhead squat due to poor stability. Relate: The patient will benefit from a stabilization program. Observe and test: Perform the overhead deep squat with resistance to abduction at the knees (with a band or belt around the knees). Reassess: This leads to increased ROM, but the patient still has pain. Indicates: This is not a gluteus medius issue.

Functional child’s pose. Ideally, there should be even flexion throughout the lumbar and thoracic regions. Observe and test: The patient performs a yoga-type child’s pose with outstretched arms over the head. Instruct the patient to perform posterior rocking such that the posterior glutes touch the heels. Visually observe the spinal contours. Assess: If a patient has an area of increased kyphosis and is unable to get the spine in a natural curved posture, it is likely a hypomobile or stiff area. The purpose is to assess patients who may be hypomobile. It is important to identify stiff or restricted segments, because these may be a cause of compensatory hypermobility or “give” at an adjacent joint. The site of the “give” or compensation can be the site of the pathology and pain. The stiff area will need to be mobilized with manual techniques and/or the patient can be instructed in the use of a foam roll for self-mobilization.
Improving the quality of the deep overhead squat: Here are four specific progressions and sequences that will improve the deep overhead squat:

Toe-Touch Progression #1:

    • Stand erect with feet side by side, heels and toes touching.
    • Elevate balls of the feet onto a 1- to 2- inch platform.
    • Insert a towel roll or foam roll between the knees.
    • Reach for the ceiling, stretching the arms as high as possible with palms facing forward.
    • Touch fingertips to toes.
    • Repeat for 10 to 12 reps.

Toe-Touch Progression #2:

    • Stand erect with feet side by side, heels and toes touching.
    • Elevate the heels on a 1- to 2-inch platform; toes on ground.
    • Insert a towel roll or foam roll between the knees.
    • Reach for the ceiling, stretching the arms as high as possible with palms facing forward.
    • Touch fingertips to toes.
    • Repeat for 10 to 12 reps.

Reverse Squat Sequence:

    • Stand with the heels on a 1- to 2-inch platform, feet spread shoulder-width apart or wider.
    • Bend forward until the entire palm can be laid flat on the floor or on a 2-, 4- or 6-inch platform. The entire palm must be flat.
    • Lower the body, knees outside of elbows; keep the feet straight.
    • Sit deeply into the squat.
    • Stretch for 20 seconds.

Deep Squat to a “Y” Position Sequence:

    • Start from a deep squat position with the hands on the platform.
    • Raise the right arm over the head. Follow the hand with the eyes.
    • Raise the left arm over the head. Follow the hand with the eyes.
    • With both hands in a “Y” position, extend the spine as much as possible.
    • Stand up.
    • Repeat for 10 to 12 reps.

How to identify impairment in the overhead deep squat. Observation: The patient complains of flexion-related symptoms in the lumbar spine. The lumbar spine flexes during the descent. Relate: The lumbar spine has greater motion into flexion relative to the hips under flexion load. Rehab: The patient needs to learn to forward lean with a straight back and independent hip flexion, but only as far as the neutral lumbopelvic position can be maintained. Observation: Abnormal lumbar extension during the descent/ascent. Relate: This implicates short illiopsoas, lumbar erectors, quadratus lumborum and latissimus dorsi muscles. Rehab: The patient performs a “single-leg forward bend” with the foot of the tight side on a stool. This puts the knee and hip into slight flexion. Put the foot of the tight side flat on a stationary stool approximately 12 inches high. Ask the patient to bend forward and touch the fingertips to the floor. Repeat this 10-12 times.

Functional stability grip assist. Observe: During the overhead deep squat, the doctor observes that the heel of foot rises while descending from the neutral starting position. Retest: Ask the patient to keep their feet flat. If you notice a lack of depth with the heels flat on the ground, this may be from a lack of stability and/or a short soleus muscle. Retest: Have the patient perform the “functional stability grip assist deep squat: – the patient grips each hand to a door knob, a bar or the back of a chair. Perform the deep squat. Depth should improve; then stretch the Achilles, gastrocnemius, quadriceps and gluteals. Holding onto a rail or bar will enhance stability that provides active control of the local or global muscle’s ability to control motion. Relate: Lack of depth indicates restricted Achilles, gastroc, quads and superficial glut max. Observation: There is a lack of depth and the knees drift internally during descent and/or ascent. Assess: Lack of depth indicates dysfunction of the adductors, gluteals and proximal hamstring. Rehab solution: Lie on your back with your feet up on the wall. As you get more functional, your hips will sit closer to the wall and be flat on the floor at the same time. When you get your legs up on the wall, allow them to spread apart to stretch the adductors. Tighten the thighs and pull your toes back toward your knees and hold for one to four minutes. Your feet must be pointed straight behind you for your hips to be doing the work needed to stabilize the spine. Progression: Perform the above with a foam roll under the lumbar spine to enhance the lordosis. Spread eagle with the legs and feet up along the side of a wall. This will simultaneously stretch the adductors and hamstrings. Observation: The low back goes into flexion during the overhead deep squat. Assess: If the low back goes into flexion to get depth, this implicates the iliotibial band that inserts into the glut max or lack of lumbar control. Solution: Stretch the gluteus and iliotibial region.

Overhead deep squat asymmetry. Observe: Lack of depth or asymmetry occurs during the range of descent motion. Assess: Does the pelvis shift? The pelvis will shift away from restriction. Relate: Asymmetry when squatting indicates restriction in the hip rotators. Rehab: Stretch or mobilize hip rotators. Instruct the patient to lie on their back with both knees bent and their feet flat on the floor, pointed straight ahead. The patient should place their arms out to the side at shoulder level, cross their right ankle over the left knee and rotate the ankle/knee junction in that same direction to the floor. Instruct them to press the right knee away from their body with the right hip musculature; repeat the exercise on the opposite side.

Dysfunction: Asymmetry when squatting shifting to a side. To determine what hip may be causing the dysfunction, check hip height in prone position. Rehab: Stretch and mobilize hips. The prone anterior hip stretch is performed. With the patient in the prone position, place one ankle under the opposite patella. Ideally, the hips should be symmetrical and the height of the anterior hips should be equal distance from the table top. Observe and assess: Asymmetry when squatting shifting to a side indicates weak abductors. Rehab solution: Strengthen the abductors. Perform an abductor exercise by having the patient stand sideways next to the wall. The leg that is closest to the wall should be placed in 90 degrees at the hip and knee. Push with the outside leg into the wall. Progress to wall ball exercises.

Tucker test. As noted in my previous article, the purpose of this test is to help recruit a deeper and stronger contraction of the gluteal group. Test: Place a quarter on the outside of the clothes between the buttocks at the level of the anus and have the patient hold it in place with a strong gluteal contraction. Assess: Can the patient contract the gluteals strong enough and continuously while performing the bridge exercise up and down so the quarter does not drop to the floor? Relate: In order to hold the quarter in place, the patient must concentrate on performing a strong gluteal contraction. This forces the continuous contraction of the gluteus and initiates a co-contraction of the abdominals. Progression: Have the patient perform the overhead deep squat with the quarter held in the buttocks.

Resources

  1. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia 1989;230(60):20-24.
  2. Caterisano A, Moss RF, Pellinger TK, Woodruff K, Lewis VC, Booth W, Khadra T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J Strength Cond Res August 2002;16(30:428-32
  3. Cholewicki and McGill. Mechanical stability in the vivo lumbar spine: implications for injury and chronic low back pain. Clinical Biomechanics 1996;11(1):1-15.
  4. Clark M. “Introduction to Kinetic Chain Dysfunction.” Course notes, 2005. Copyright NASM.
  5. Comerford M. “Lumbo-Pelvic Stability.” Course notes, 2003. Copyright M. Comerford.
  6. Vermeil A. “Sports & Fitness.” Course notes, 2005. Copyright A. Vermeil.
  7. All the coaches, sports medicine specialists and sports scientists who have shared their knowledge with me.

Overhead Deep Squats: Understanding Movement & Function

by Jeffrey H. Tucker, DC, DACRB

What are the most common imbalances patients present with? The obvious answer is musculoskeletal imbalances. This article discusses the functional assessment of stability and mobility to movement re-education. Assessment of the overhead deep squat for stability and mobility imbalances will improve your awareness of the patient’s movement dysfunction. Training stability and providing manual mobilization and/or self mobilization are current concepts of movement dysfunction.

A restricted segment can cause a compensation that leads to uncontrolled and increased motion. The uncontrolled segment or region is the most likely site of the source of pathology and symptoms of mechanical origin. Common dysfunctions within the movement system occur when the ankle, hip or thoracic spine needs mobilization, or when the knee, lumbar spine or glenohumeral joint needs stabilization.

There is plenty of evidence to support the link between uncontrolled intersegmental translation or uncontrolled range of motion and the development of musculoskeletal pain and degenerative pathology. Motor control dysfunction within the ankle, knee, hips, lumbar region, thoracic region and shoulder contribute to insidious onset, chronicity and recurrence of pain.

We need to restore ankle dorsiflexion, hip flexion/extension and/or hip adduction/abduction, and thoracic flexion and extension, because there is a frequent relationship between the loss of range of motion at one or more motion segments, and the development of compensatory excessive movement at adjacent segments. Learning to refine mobility and stability will reduce asymmetries and limitations as a means of injury prevention. It is important to establish stabilization prior to strengthening. Evaluate flexibility limitations and asymmetries between the left and right sides of the body. An individual conceivably could overcome a deficit in range of motion in one joint by using more ROM at another joint to achieve the specified goal.

The body is a “kinetic chain” of interconnected parts. I recommend overhead deep squatting as the primary assessment to evaluate whether mobility or stability is required.

The overhead deep squat: The ideal criteria for a well-performed overhead deep squat are:

    1. upper torso parallel with the tibia or toward vertical (back is relatively upright);
    2. femur below horizontal;
    3. knees aligned over feet;
    4. both arms overhead with the dowel aligned over feet;
    5. toes pointed forward; and
    6. knees don’t turn in or out.

Hypomobility at any joint in the lower extremity kinetic chain can challenge the motor-control mechanisms of the patient and lead to joint instability. Joint hypomobility can present as dysfunction of intra-articular motion, producing limitations of the accessory movements of roll and glide between the joint surfaces. Limited range of motion also can occur in the myofascial system (extra-articular in nature). These two components are interrelated and often occur together. The abnormal displacement or restrictive barrier to movement changes the normal pattern of movement of the instantaneous axis of rotation (IAR). Movement around an abnormal axis of rotation imposes abnormal compression or impingement on some aspect of the joint tissues and produces altered proprioceptive input to the central nervous system. The motor-control system must adapt to maintain function. These faulty movements increase microtrauma in the tissues around the joint, which, if accumulative, lead to dysfunction and pain.

After an ankle sprain, hypomobility may occur at the subtalar joint, talocrural joint, distal tibiofibular joint, or proximal tibiofibular joint. Limited dorsiflexion after lateral ankle sprain has been attributed to tightness in the gastrocnemius-soleus complex, capsular adhesions developed during immobilization, and subluxations or any combination.

Ankle: The hypomobility of the ankle or tissue tightness can be observed during the overhead deep squat if the heel of the foot rises while descending from a neutral starting position. This is the result of limited soleus muscle motion (e.g., ankle dorsiflexion). Motion can be restored and maintained despite restricted arthrokinematic motion. Restoration of dorsiflexion and normal gait patterns occurs after anterior-to-posterior (manual or self) mobilizations of the talus in the mortise.

If the patient’s toes turn outward while descending from the starting position, it means he or she may have weak, tight lateral gastrocnemius, hamstrings, weak inner thighs, and is at risk for Achilles tendonitis.

The progression of rehab to improve the foot dysfunction is to start the patient with ankle self-mobilization. The patient starts out in the double-leg stance. Take a single step forward onto a stool with the right foot. Ask the patient to flex the ankle and knee over the stool as far as they can go. Compare to the left side. The restricted side can be stretched and mobilized while on the stool by repetitively moving the knee over the foot. Altered movement of the subtalar joints and soft tissue tightness can be restored through self repetitive range of motion maneuvers. Next, have the patient perform a wall stretch. With their hands against a wall, feet flat on the ground and one foot at least 18 to 20 inches behind the other, have them bend the front knee. Hold the static stretch for at least 30 seconds. Do this at least two times per leg. The next exercise involves standing on one foot, turned in 45 degrees with the heel hanging off a step. The patient’s body’weight is on the forefoot. Have them hold onto a wall or rail handle and let their body weight drop down. Instruct the patient to hold this stretch for at least 60 seconds.

Knee: If the knees drift inward while descending from the start position of the overhead deep squat it may mean the patient has weak glutes, tight inner thighs, and is prone to knee and low back problems. The patellofemoral joint may be influenced by the segmental interactions of the lower extremity. Abnormal motions of the tibia and femur in the transverse and frontal planes are believed to have an effect on the patellofemoral joint. The first progression for the knee is to use a foam roll on the adductor and abductor muscles. Firmly press and roll along the tight tissue for several minutes or until you feel a release of tight tissue. Have the patient perform a lunge at a 2 o’clock or 3 o’clock pose with the right leg and a 10 o’clock to 11 o’clock pose with the left leg. The patient should next perform side-lying leg raises. Do not allow the quadratus lumborum muscle to activate early. Raise and lower the top leg, keeping it straight. Isolate the TFL and glute medius. Only perform this on the side that drifts.

Hip: If the patient can keep the feet straight ahead or have only slight external rotation, plus the heels stay flat on the floor while squatting, but they cannot achieve the depth of getting the femurs below the horizontal, they may have tightness where the TFL attach into the glutes. The hip joints may be restricted. The rehab progression is to start with manual mobilization of the hips. Teach the patient how to perform hip range of motion on their own. Part of this solution is simply to do repetitive squats. Over time and many repetitions, the patient will break up the tissue tightness and be able to squat lower and lower.

If you suspect a patient is having a hip extension firing problem during gait, with the hamstrings dominating the movement pattern, rocker sandals can help retrain the gluteus maximus. There are a number of ways to “wake up” the gluts while squatting: for example, weight shift toward the heels, bridges up and down with a therapy band around knees to provide resistance to abduction; side steps with a band around the ankles; or bridges on a gym ball with alternate heel raises. Tight hip flexors will inhibit the gluteus, so these need to be evaluated for length.

For a stronger gluteal contraction, perform the Tucker test, the purpose of which is to help recruit a deeper and stronger contraction of the gluteal group. Test: Place a quarter on the outside of the patient’s clothes between the buttocks at the level of the anus, and have the client hold it in place with a strong gluteal contraction. Assess: Can the patient contract the gluteals strong enough and continuously while performing the bridge exercise up and down so the quarter does not drop to the floor? Relate: In order to hold the quarter in place, the patient must concentrate on performing a strong gluteal contraction. This forces the continuous contraction of the gluteus and initiates a co-contraction of the abdominals. Progression: Have the patient perform the overhead deep squat with the quarter held in the buttocks.

Lumbar: If the patient’s back bends into flexion while performing the overhead deep squat, it may mean they have tight hip flexors, a weak core and poor posture. This is such an important diagnostic tool. Why is this point so important? The lumbar spine may be more flexible relative to the hips in flexion due to lengthened erector spinae and shortened hamstrings. This can lead to a hamstring strain, but more importantly, the muscles that control excessive lumbar flexion (lumbar erector spinae) have more “give” than the muscles that limit hip flexion (hamstrings). Consequently, during trunk flexion the lumbar spine gives more easily than the hips and excessive flexion occurs in the lumbar spine relative to the amount and time of flexion at the hip joints, resulting in compensatory lumbar flexion and a potential lumbar flexion stability dysfunction. The patient complains of flexion-related symptoms in the lumbar spine. You can see how this will translate to their everyday life. See if you can detect the following possible flexion movement dysfunctions in the low back when the patient forward leans while performing the overhead deep squat:

    1. Shortened back extensor mobilizer muscles (longissimus and iliocostalis): The pelvis shifts more than 4 to 5 inches posteriorly during forward bending and the spine demonstrates limited flexion.
    2. Shortened hamstrings: The hips demonstrate less than 70 degrees of hip flexion during forward bending.
    3. Lengthened gluteus maximus: The hips demonstrate more than 90 degrees of hip flexion during forward bending.
    4. Lengthened back extensor stabilizer muscles (superficial multifidus and spinalis): The spine demonstrates excessive flexion during forward bending.

The progression of rehab is to use the foam roll on the anterior and lateral sides of the hips. Work out as much tissue tightness as you can on the foam roll. To stretch the hip flexors, teach your patient to do a lunge with an arm raised overhead. The precise steps are as follows: Leading with the right foot, the patient performs a lunge while raising the left arm overhead and rotating the upper body to the left. Instruct the patient to hold this pose for 30 seconds and to perform at least two stretches on each side. The most important solution for this movement dysfunction is to control movement at the site of the instability. This concept is a process of sensory-motor re-programming to regain proprioceptive awareness of joint position, muscle activation and movement coordination. This training is beyond the scope of this article. However, you can start by teaching clients to co-contract the mutifidus and transverse abdominus muscles.

Thoracic: During the overhead deep squat, the patient presentation of lack of mobility in the thoracic spine may include the inability to get the dowel directly over the feet. I usually find the arms way out in front of the feet. These patients lack thoracic extension. You will feel restricted motion on palpation of the thoracic spine into extension. The patient may have an obvious forward-drawn posture, anterior head and shoulder carriage (slumping) and/or an increased kyphosis. The rehab solution for this dysfunction is mobilization. The foam roll will allow for self mobilization into extension. The repetition of performing self-mobilization of the thoracic spine into extension, while the patient performs the overhead deep squats, is an exercise in and of itself. Another self-mobilization maneuver involves asking the patient to sit on a chair facing the wall, leaning the forehead on crossed arms against the wall. The patient’s knees and toes touch the wall. Taking deep breaths in and out, on the exhalation the patient forces thoracic extension movement, repeating the process about 10 times. I often find the thoracolumbar junction, T6 and above, as the key joints to manipulate to create flexibility.

Shoulder: The gleno-humeral functions. Stability is sacrificed to a large degree to achieve this mobility. During the overhead deep squat you will observe the patient pushing the dowel behind their back instead of over the head. To correct the instability in the shoulder we need to correct the length-tension relationship, improve muscle endurance and coordination of the rotator cuff muscles. These muscles act in a manner to generate a force balance to maintain centering of the joint throughout the range of motion.

Assessment of the overhead deep squat provides analysis of stability and mobility. An exercise program based on the assessment can be implemented to achieve stability and mobility. Stability is only tested reliably under low-load situations. Mobility is based on the ability to pass or fail the ideal criteria of the overhead deep-squat posture. The benefits of having good stability function of both the local and global stabilizer muscles, as well as good joint flexibility, are improved low-threshold motor control and reduced mechanical musculoskeletal pain.


Resources

  1. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia 1989;230(60):20-24.
  2. Caterisano A, Moss RF, Pellinger TK, Woodruff K, Lewis VC, Booth W, Khadra T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J Strength Cond Res August 2002;16(30:428-32
  3. Cholewicki and McGill. Mechanical stability in the vivo lumbar spine: implications for injury and chronic low back pain. Clinical Biomechanics 1996;11(1):1-15.
  4. Clark M. “Introduction to Kinetic Chain Dysfunction.” Course notes, 2005. Copyright NASM.
  5. Comerford M. “Lumbo-Pelvic Stability.” Course notes, 2003. Copyright M. Comerford.
  6. Vermeil A. “Sports & Fitness.” Course notes, 2005. Copyright A. Vermeil.

Dr. Jeffrey H. Tucker graduated from Los Angeles College of Chiropractic in 1982. He is a diplomate of the American Chiropractic Rehabilitation Board and teaches a 14-hour postgraduate diplomate series on cervical and TMD rehab and lumbar spine biomechanics and rehab. Dr. Tucker practices in West Los Angeles and Encino, Calif.

Thera-Band Training

by Jeffrey H. Tucker, DC, DACRB

The product is great for rehabilitation, functional movement training, sport-specific conditioning and group classes.

Sometimes patients have to take a step backward to move forward, and sometimes their voyage is not so much about discovery as rediscovery.

Stiffness is not the major chief complaint I hear from clients, but it is often checked off on their intake forms. Stiffness can be associated with pain, inflammation, fatigue, and any other complaint that bring clients in my office. The most common reason for stiffness is the effects of immobilization of the joints and muscles. The spinal joints, hip joints, knee joints, shoulder joints, and ankle joints are the most commonly involved. Muscle and joint pain commonly originates from bad habits of sitting, standing, sleeping, and walking. Stiffness has real consequences if ignored.

A Functional Workout

It doesn’t matter if my client is young, middle-aged, or a senior citizen; I use the functional training approach as part of my treatment, especially for relief of stiffness. I start my rehab recovery teaching patients body-weight maneuvers and floor exercises. Then, I progress patients to use bands. I incorporate resistance bands from Thera-Band for rehabilitation, functional movement training, sport-specific conditioning, and group classes. The next progression I use is to free weights and Kettlebells. Last year, our profession was inundated with laser therapy and decompression tables, while the strength-training world was invaded by Kettlebells. I like to think that I have access to every kind of equipment, but through it all, I am still a proponent of the minimal and inexpensive need for equipment in “authentic” functional training, like the bands.

The bands can provide the basis for an authentic functional workout limited only by the imagination and knowledge of the practitioner. Functional exercise is based on its outcome, not how the exercise looks. Don’t ask me how to activate specific muscles (that question was answered years ago). Instead, ask: “Why did this person lose the movement pattern in the first place?” The bands help me get rid of stiffness and improve functional strength, which is usable strength. Functional strength is hard to measure. That’s why I attempt to identify it by using many unorthodox movements, such as assisted posterior reaches.

This exercise is one of the best methods of developing functional abdominal strength in overhead athletes, or athletes in sports that bring the arms overhead, such as tennis and basketball. Stand on both legs (eventually progress to one-legged stands) facing away from a band firmly held in place. Hold the band in both hands, and extend your arms straight up above your head. Bring the hips forward and the hands back. Lean backward as far as you can without feeling pressure in your lower back. Engage the lower abdominals to return to the starting position.

Using the bands, I teach movements that train the body to do what it was meant to do. These can simply be broken down into four pillars:

    1. Standing and locomotion (gait). One of my favorite exercises that improve the hip rotator stabilizers (gluteus) is to have clients wrap the Thera-Band (usually the green band) around the ankles and walk sideways across the room or down a hall to activate the gluteus. This one maneuver alone has helped more patients improve altered gait than any other.
    2. Movements that lower or raise the body’s center of mass, such as squatting, lunging, and climbing. I have clients stand on a band and hold the ends of the band in their hands while doing squats, and perform an overhead press on the way up.
    3. Pushing and pulling, such as standing rows and pressing maneuvers.
    4. Rotation. These are changes in direction. For example, torso rotation and proprioceptive neuromuscular facilitation (PNF) band chops are a functional way to train the abdominals. Everyone talks about the core, which includes the major muscles attached to the trunk, above the ischial tuberosity, and below the superior aspect of the sternum. Approximately 87% of the core muscles are oriented either diagonally or horizontally and have rotation as one of their actions. Our bodies were made for rotation, yet very little rotational training is addressed in today’s standard training protocols. The bands make rotational training easy.

The most annoying things about the bands is getting the latex powder on your clothes and occasionally the bands break while you are in the middle of a set. An advantage to band assessing and training is the observation of symmetrical or asymmetrical movements. The link between uncontrolled spinal and joint intersegmental translation or uncontrolled range of motion, and the development of musculoskeletal pain and degenerative pathology, is well-known. Often, patients are not even aware of the bad movement pattern that they are doing over and over that is causing the stiffness. Sometimes, it is only clearly seen when the muscles fatigue and pain sets in.

The inefficient control of muscles and bones, poor movement habits, and poor posture give rise to very subtle and unique imbalances in the body-stability system. This puts mechanical stress and strain on the joints; and the muscular, neurological, and connective tissue systems of the body. This leads to cumulative microinflammation, which leads to pain and pathology. This predisposes joints to early aging and stiffness. A significant amount of injuries and stiffness occurs in clients with right- to left-sided strength and flexibility imbalances. My recommendations with the Thera-Band are to put the core first and to look for the following asymmetries:

Core Stability

Everyone has heard about core stability and realizes how critical it is for the inner core of the body, namely, those joints closer to the spine, to be supported by the postural muscles designed to do so. Core stabilization was originally referred to as “low load motor control training of the trunk while progressively adding a limb load and proprioceptive challenge while maintaining a neutral spine.”

Assisted posterior reaches using the Thera-Band develop functional abdominal strength in overhead athletes.

It’s more about learning to move than about strength. Stability is about keeping the spine still while you move the arms or legs. For example, can you independently move the hip and not the lumbar spine while on your hands and knees, and raise a single leg out behind you (with the band wrapped around the bottom of the foot and the ends held in your hand)?

Flexibility

The purpose of flexibility varies for the different muscles around the joints. For the major power muscles, it is important that flexibility allows freedom of movement for the pelvis, hips, trunk, scapula, and humerus. Freedom of movement needs to be symmetrical.

General Muscle Strength

Once the foundational issues of consistency, core stability, flexibility, and balance control are being implemented, I then look at the bigger picture of the “outer core.” The rest of your body will need strength to carry you into your 80s and 90s. Performance as you age will be improved with strength. You can create strength using the tubing made by Thera-Band. If you don’t tend to strengthen, the natural progression is for the body to lose it.

Stretching

I usually recommend that stretching is the last thing a person does once he or she is pain-free. I see many patients that injure themselves from overstretching in yoga class and with Pilates. Stretch to increase flexibility, but don’t overdo it. I encourage patients to feel the muscle barrier and don’t go past that point. Otherwise, you start pulling on the ligaments, and these were not meant to be pulled apart.

Neuromusculoskeletal function involves a complex integration of proprioceptors facilitating; muscles reacting and joints moving simultaneously in sagital, frontal, and transverse planes of motion in a ground-force kinetic chain-reaction response.

This is facilitated by the moving body in relation to the ground and gravity. Use the bands to put patients through movements that let you see how an individual can control outside forces that are irregular in intensity, speed, load, symmetry, and direction, like sports and real life.

The factors that may play a role in avoiding overtraining are variety and the integrated manner of training. Since there is no isolation of muscle, no one particular muscle gets an inordinate amount of volume. So less recovery time is needed. Start clients on the four pillars and stabilization training as soon as they can.

Is having the bands useful? You bet. Even though I had to get used to how to give directions to patients, and sometimes it takes a while for patients to get the movement pattern correct, bands are still more versatile than machines.

Jeffrey Tucker, DC, DACRB, has been in continuous private practice for 24 years in Los Angeles. His practice includes yoga, Pilates, and Gymstick training. He teaches courses in rehabilitation.

Functional Exercises: Hamstring Stretching for Low Back Pain

by Jeffrey H. Tucker, DC, DACRB

The sun salutation in yoga is where you begin by standing on your mat with your feet together (toes and ankles touching) and your arms by your sides. Lengthen your spine upwards from the tip of the tailbone to the crown of your head. Inhale deeply. Exhale and bring the hands together in the prayer position. Inhale as you stretch your arms up beside your head, lengthening and arching your spine. Exhale and bend forward, hinging from the hips, with your arms stretched out in front. Place your hands flat on the mat beside each foot, bending your knees if you have to. Try to bring your forehead to your knees. STOP right here. The sun salutation continues on with other maneuvers, but I want to talk about the toe-touching portion. It’s this maneuver, whether during a yoga class, bending over in the shower or picking up an object on the floor that can cause so much trouble for our lower backs.

A forward bend does not require straight legs. The key is to aim for a perfect hinge from your hips no matter how straight you can press your legs. If you can touch the floor but the spine is bowing to achieve this, you leave the hip hinge open and the stress is carried in the back and knees. Short hamstrings are common and the body compensates for this restriction by increasing motion in the lumbar spine. In normal functional movement, the brain and central nervous system (CNS) have a variety of strategies available to perform any functional task or movement. During functional bending-forward movements, a relatively stiffer hamstring muscle tends to resist ideal movement, but function is maintained by excessively increasing lumbar spine flexion range. This is what is called “compensation.”

It’s not unusual for a person with tight hamstrings to compensate with resultant lengthening or overstrain of the lower lumbar spinal extensor muscles (lumbar spinalis and superficial multifidus). Once the lumbar spine has developed abnormal compensatory motion, the stabilizing muscles and supporting structures (e.g., ligaments) around the lumbar joints become too flexible, more lax or provide insufficient stiffness or resistance to motion. These joints are now poorly controlled by the muscles. This can cause pain in the low back region with daily activities and unguarded movements, as well as sitting, standing and lying postures.

The lumbar spine may be more flexible relative to the hips in flexion due to lengthened erector spinae and shortened hamstrings. The muscles that control excessive lumbar flexion (lumbar erector spinae) have more give than the muscles that limit hip flexion (hamstrings). In summary, if you repeatedly bend forward with tight hamstrings, the lumbar spine may give more easily than the hips. Excessive flexion will occur in the lumbar spine relative to the amount and timing of flexion at the hip joints. This results in compensatory lumbar flexion and potential lumbar spine instability.

A lumbar flexion instability does not require that muscle or connective-tissue structures are tight or short (e.g., hamstrings in the lumbar flexion dysfunction), although you may have a sense of the hamstrings being tight. It does matter that the hamstrings are less flexible and have less give than the muscles at the site of greater relative flexibility or those designed to control dysfunction (erector spinae). Likewise, it does not require that muscle or connective- tissue structures be weak at the site of greatest relative flexibility or overstrain (e.g., abdominals in the lumbar extension dysfunction). It only requires that they have more give or are functionally longer than the muscles at the adjacent segment (hip flexors), which may be very strong or short.

The hamstrings seem to have a clear function. They produce range-of-joint movement (flex the knee joint and extend the hip). The hamstrings are an eccentric resistor of knee extension in sprinting. Correcting the length of the hamstring may be important while simultaneously strengthening the lumbar region. The following procedures are not to be done if your low back is in the inflammatory stage.

Self Test: Bend over and try to place fingers or palms to the floor. Measure the distance of the middle fingers from the floor. Benchmark is the ability to have palms flat on the floor.

Dysfunction: Not able to touch fingers to the floor; you feel discomfort or pain in the low back; or your thoracic spine or lumbar spine are bowing, with the hip hinge wide open.

Solution: Think of a belt lifting the hips up and elongating the spine. Push your heels down and push your bottom up. Stretch the hamstrings with the back locked. Practice separating the tailbone from the chin while hinging at the hips.

Self Test: Bend over and try to place fingers or palms on the floor.

Dysfunction: The thoracic spine and the hamstrings feel tight.

Solution: Practice bending over at the hip hinge with outstretched arms over your head while simultaneously maximally tightening and squeezing the buttocks (gluteals) and fists (keep the arms outstretched). Continue bending over at the hip hinge, fists and buttocks as tight as possible, for eight seconds. Release the tension but don’t come back up yet. Repeat the squeezing of the glutes and fists for eight seconds. Practice this maneuver with your buttocks against a wall and then continue to get lower and farther away from the wall. Try to isolate the hamstring muscle and belly, not the attachments behind the knees. Repeat this maneuver five to seven times.

Self Test: You look at your posture and see that the thoracic spine is rounded. Your normal posture has rounded shoulders.

Dysfunction: You have restricted thoracic spine motion or you have kyphosis (loss of the normal spinal curvature).

Solution #1: Release the knotted tight tissue, joints or adhesions along the spine by lying on a foam roller and putting pressure on the knots for 20-30 seconds while breathing. Do this daily for five to 10 minutes.

After this, lie down on your stomach with your hands and arms along the sides of your body (palms up). Lift up the head, shoulders and torso as high as you can toward the ceiling. Build up to the same number of repetitions as your age.

Solution #2: Practice squats while facing a wall. Stand close to the wall so your nose almost touches it; try to move your feet closer and closer to the wall. Keep the feet straight forward, allowing the movement to occur in the hips and lengthening the spine.

To stretch the back and the hamstring: Use the bow maneuver. While the back is at 90 degrees, pry one hand to the opposite heel; keep prying side to side. An important principle of stretch is to spread the load. You can go further with less stress. Repeat the original toe-touch test.

Still can’t put your palms on the floor?

Solution #1: Thoracolumbar spine post-isometric relaxation (PIR): This definitely will allow the client to bend further in the toe touch. This maneuver requires two people.

  • The client bends over with proper mechanics at the hips (push the heels down and the bottom up). Remind the person to “spread the load.”
  • Tell them to keep their weight even from the toes to the heels.
  • Place both flat palms on the client’s lower thoracic spine.
  • Ask the client to lift the thoracolumbar region, initiating from the hips and elongating the spine (think tailbone-to-chin). Resist the client’s upward movement for approximately eight seconds. You are not pushing down; you are resisting their upward movement. You do not have to be heavy-handed to give the client’s back a nice release and stretch.
  • Have the client release the upward push and simply follow them downward (lower).
  • The client stays in the new lower position and repeats the process three to five times.

Solution #2: Long-sitting partner stretch with post-isometric relaxation (PIR) technique: This maneuver requires three people. One is the person being stretched and two assistants. Two people face each other on the floor. The third person is sitting back-to-back with the person being stretched. The client’s legs are straight in the long-sitting pose. The client must hinge in the middle. The first assistant’s legs are straddled to the outside of the client’s legs. The second assistant is gently leaning against the client’s back to prevent them from leaning backward.

The first assistant takes hold of the client’s wrists in a monkey grip. The client leans forward as if they were folding, hinging from the hips, lengthening the lower spine out of the hips, making the stomach as long as possible and bringing the back as close to parallel to the floor as possible. The first assistant leans backward taking out the slack in the arms. The client is using muscles to actively extend the spine and lengthen the back of the legs, moving them forward. Remind the client to keep the arms straight and “stretch the back, breathing into the tailbone.” Keep the head in alignment with the spine. The weight of both assistants supports the stretch. Repeat this maneuver three to five times, using the principles of PIR. To come out of the stretch, the client can bend their knees slightly as they come upright.

Resources

  1. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavia, 1989;230(60):20-4.
  2. Cholewicki J, McGill S. Mechanical stability in the vivo lumbar spine: implications for injury and chronic low back pain. Clinical Biomechanics, 1996;11(1):1-15.
  3. Comerford M. Lumbo-pelvic Stability. Course notes. 2003 and 2006 Copyright Comerford.
  4. Hodges P. Transversus abdominus and lumbar multifidus muscle. Course notes. 2002 Copyright Hodges.
  5. Tsatsouline, Pavel. Stretch Course. 2007 Copyright Tsatsouline.
  6. Vermeil A. Sports & Fitness. Course notes. 2005 Copyright Vermeil.
  7. All the coaches and sports-medicine scientists who have shared their knowledge with me.

Making Fitness a Rehab Habit

by Alan Ruskin

Los Angeles DC helps patients assume control of their own rehabilitation.

More than 20 years ago, Jeff Tucker, DC, DACRB, left the practice he had shared with two other chiropractors for one reason: “I really wanted to do rehab,” he says. His colleagues didn’t share his singular enthusiasm, so he moved on and eventually established a multidisciplinary practice in Los Angeles with two medical doctors—one a specialist in pain management and the other a general practitioner with a background in acupuncture. “I found both doctors through the rehab community,” Tucker says with satisfaction.

While pain relief is the initial focus of Tucker’s practice, he also guides his patients toward optimum health by helping them assume control of their own rehabilitation. This includes teaching his patients how to use various exercises and therapeutic tools to achieve this goal.

Kicking Off with a Comprehensive Analysis

Tucker uses a variety of approaches, beginning with his own powers of observation. “My eyes are my best tool,” he says. “My examination begins as soon as I see the patient. I note their posture, watch their movement patterns.” From the patient’s health history and assessment forms, Tucker builds the foundation of his structural analysis. “The visual and postural analysis helps to evaluate the quality of their movements, more so than traditional tests that just evaluate strength.”

Next, Tucker performs an array of body-composition analyses, such as body mass index (BMI), intracellular and extracellular water, and basal metabolic rate. He uses the Biodynamics bio-impedance analyzer to help devise the kind of strength or weight-loss program that is right for the patient, and considers this phase crucial because “losing body fat and increasing muscle mass is a big part of the rehab process.”

Putting Out the Pain

Before implementing any BMI-changing program, however, Tucker must first ensure that the patient is out of pain. Calling upon his years of experience, he determines which modality will help the patient meet this goal. This may include one or more modalities, such as the recently developed technology known as Sound Assisted Soft-Tissue Mobilization (SASTM).

SASTM uses specialized instruments made from ceramic polymer, which resonate to create sound waves that are magnified as they pass through the instrument, detecting irregularities as the tool is pressed against tissue. (A lotion is used so the instrument can glide smoothly over the body.) Once the instrument has located adhesions and fascial restrictions, the doctor can treat the affected area with the pressure he applies to the instrument, which induces micro trauma to the affected area, producing a controlled inflammatory response. This in turn causes the reabsorption of fibrosis and scar tissue to facilitate healing.

SASTM is based on the ancient Chinese healing tradition of Gua Sha, which involves palpation and cutaneous stimulation to remove blood stagnation and promote normal circulation and metabolic processes. SASTM was introduced in the early 2000s by David Graston, a pioneer in the instrument-assisted soft tissue mobilization industry. The procedure is designed to reduce pain and restore function to many soft tissue injuries. “It breaks down myofascial restriction and scar tissue,” Tucker says, “allowing me to follow up with stretching and strengthening exercises. Graston developed it to aid in his recovery from carpal tunnel and a serious water-skiing injury to his knee.” Tucker believes this treatment is highly effective, and it is one of his first choices for injury and pain.

Another therapy that Tucker uses on roughly half of his patients is a Class IV High Power Warm Laser. The laser, Tucker says, stimulates cell growth and metabolism; accelerates wound healing; and results in a dramatic reduction of inflammation, fibrous scar tissue formation, and pain. “The high-power laser is more effective than its predecessor—the low level, or cold, laser—because it delivers considerably more healing photonic energy at a much greater depth of penetration, thus accelerating the healing process,” Tucker says. “Another interesting note is, because of the warmth, the patient can actually feel the laser’s healing properties at work, which contributes to greater effectiveness. The idea is to get the person out of pain as quickly as possible, and the high-power laser’s ability to alleviate pain makes it a valuable tool in my rehab armament.”

Tucker also uses standard modalities such as the Chattanooga ultrasound and Dynatron interferential electrotherapy, both of which are widely used adjuncts to mobilization and manipulation treatments. Additionally, Tucker’s use of specialty tables plays a significant role in his patients’ treatment. He believes that his Leander flexion-distraction table is invaluable in providing gentle traction and repetitive motion, and that his Repex tables for extension are particularly effective for disk patients.

Building Bodies Through Fitness and Rehab

Rounding out Tucker’s therapeutic collection are foam rolls, the Swiss Ball (aka the Gym Ball or the Big Ball), free weights, and most especially, the relatively new Gymstick (www.GymstickLA.com).

A simple, dense foam roll, 3 feet long and 6 inches wide, that clients lie on with their own body weight, is an important component of achieving and maintaining healthy, full range of motion around the joints. “By putting pressure on tender areas along the muscle tissue, the golgi tendon organs help trigger the relaxation of the muscle spindles, which helps to dissipate adhesions, increase blood flow and enhance overall movement,” Tucker says. “When used in self-massage the roll can have a positive effect on cellular viscosity, changing the fluid properties of tissues to help prevent the drying out and stiffness that are typical symptoms of aging. “It’s a wonderful modality,” continues Tucker, who teaches his patients how to use the rolls for maximum benefit.

Free weight and Kettlebell programs are also high on the list, along with the Swiss Ball. Tucker prefers free weights over stationary machines because, “Where in real life do you sit down and push weights other than in the gym?” He recommends their regular use for building strength and stamina. He also makes use of the Swiss (Big) Ball, which is excellent for developing balance and core strength.

But the real star of Tucker’s rehab program is the up-and-coming Gymstick, which he believes “is going to be one of the best home exercise devices for rehabilitation or small group exercise classes.” Developed in Finland, the Gymstick is regarded as a total body fitness tool that produces speedy results in cardiovascular, muscular, and endurance training.

The Gymstick uses an exercise stick and resistance bands. The bands are attached to each end of the stick, with loops on the other end of the bands that go under the feet. There are hundreds of exercises working out every aspect of strength, flexibility and balance, including replicating free weight exercises such as squats, curls, and presses. The device comes in five strength levels and colors, to suit any user, regardless of age or fitness level. Resistance can also be raised or lowered within each level. The Gymstick provides resistance training for both Type I (slow-twitch) and Type II (fast-twitch) muscle fibers, and it is very efficient in reducing body fat (at a rate of up to 700 calories per hour!).

An Ideal Approach

Tucker’s ultimate rehab and fitness regimen encompasses the use of SASTM and other modalities such as warm laser and ultrasound for pain relief, low-load body exercises such as bridges and quadruped maneuvers, and then whole-body stabilization exercises, including squats and lunges. Once this is accomplished, Tucker moves on to free weights and the Gymstick which, along with diet and nutritional counseling, puts the patient on the road to optimal, self-sustaining strength, flexibility, and cardiovascular health and endurance.

As Tucker puts it, “Many of my patients want to know, ‘What am I going to be like 20 years from now?’ ” It’s a good question, and Tucker’s goal is to provide a good answer.

Alan Ruskin is staff writer for Chiropractic Products. For more information, please contact linkEmail(‘aruskin’);aruskin@ascendmedia.com.

Principles of a Rehab Specialist: From Fat Loss to Performance Ready, Part 3

Heart Rate and Exercise Intensity

by Jeffrey H. Tucker, DC, DACRB

In part 3 of this article, let’s discuss heart rate and exercise intensity. It’s imperative to have baseline information on your patients to determine how to most efficiently assist them in achieving their fitness goals.

It’s very important you know their resting heart rate and maximum heart rate (MHR). During a workout, their heart rate is a very reliable indicator of their personal performance level or training load – not as absolute numerical values, but in relation to their own heart rate values.

Calculating Maximum Heart Rate

Miller Formula: 217 – (0.85 x age)
Example: 45-year-old
(0.85 x 45 = 38.25)
217 – 38 = 189 MHR

Recent research identified the following formula as more accurately reflecting the relationship between MHR and age:1 MHR = 206.9 – (0.67 x age).

It’s relatively easy to measure your heart rate at rest by feeling your radial pulse or by using a heart rate monitor while still in bed after a good night’s sleep. Once trained, our patients easily can determine their resting heart rate. However, a reliable measurement of maximum heart rate often requires a visit to a testing facility or a sports-minded chiropractor.

If you are experienced in fitness training and are enjoying good health, you also can do your own test with a maximum performance session in your favorite sport. After 15-20 minutes of warming up, do two or three maximum intensity work cycles of around 3-4 minutes and recuperate between them for 30 seconds. If it’s difficult to reach high intensity in your favorite sport (e.g., cycling, cross-country skiing, rowing), you can perform the maximum intensity sessions on a steep hill. The highest measured reading you can achieve is a good estimate of your maximum heart rate.

Target Heart Rate Zone

Your target heart rate zone is the number of times per minute your heart needs to beat to achieve a desired workout effect. It’s represented as a percentage of the maximum number of times your heart can beat per minute (MHR). Most research recommends working out at a target heart rate zone between 60 percent and 75 percent of your MHR.

You need to be able to progress a patient to higher levels of fitness and ensure they are sufficiently healthy to exercise at the desired intensity. Tests performed in different sports mostly indicate your maximum heart rate in that given sport, not necessarily an accurate and absolute value. For example, many people’s heart rate is 10-20 beats per minute (BPM) lower when cycling than when running and even lower when swimming; while cross-country skiing often is slightly higher than when running. When you know your resting and maximum heart rates, it’s easier to control your training intensity.

Xavier Jouven, MD, did a study with men and found those whose heart rates increased the least during exercise (less than 89 BPM) were six times more likely to die of sudden death from myocardial infarction than men whose heart rates skyrocketed. More importantly, men whose heart rates didn’t drop by at least 25 BPM within one minute after exercise also had a greater risk of cardiac death. The risk of sudden death from myocardial infarction was increased in subjects with a resting heart rate more than 75 BPM; an increase in heart rate during exercise of less than 89 BPM; and a decrease in heart rate less than 25 BPM, one minute after exercise.

The conclusion is that the heart-rate profile during exercise and recovery is a predictor of sudden death.2

How the Training Effect Works

How can we use this information to design a training session? Using the National Academy of Sports Medicine (NASM) template, we can create an “integrated performance profile.” Establish the patient’s current fitness level (unfit, fit, athlete, etc.) from your general and medical history, exercise history, body fat analysis and circumference measurements. Combine this information with heart rate and progress your patients to develop better results. Understand that different types of workout intensities are needed and have their own important role to play in developing your fitness level and achieving better results. We cannot let our patients do the same 30-minute walk day after day and expect progress. We have a responsibility to progress and challenge them.

Exercising below 60 percent of your maximum heart rate is relatively easy on your system. When it comes to fitness training, intensity this low is significant mainly in restorative training and improving your basic fitness when you are just beginning to exercise or after a long break. Everyday exercise – walking, climbing stairs, cycling, etc. – usually is performed within this intensity zone. These sessions, when lasting more than one hour, can develop endurance, may enhance recovery, but will not likely improve maximum performance.

Exercising at 60-70 percent of your maximum heart rate is considered the fat-burning zone. Peak fat oxidation has been shown to occur during exercise at 63 percent VO2 max. Peak fat oxidation progressively lessens above this point and was minimal at 82 percent VO2 max, which is near the lactate threshold of 87 percent.

The 60 percent to 70 percent zone improves your basic aerobic fitness level effectively. Exercising at this intensity feels easy, but workouts with a long duration can have a very high training effect. The majority of cardiovascular conditioning training should be performed within this zone. Improving this basic fitness builds a foundation for other exercise and prepares your system for more energetic activity. Long-duration workouts at this zone consume a lot of energy, especially from your body’s stored fat.3

Exercising at 70 percent to 80 percent of your maximum heart rate begins to be quite energetic and feels like hard work. This zone will improve your ability to move quickly and economically. In this zone, lactic acid begins to form in your system, but your body still is able to completely flush it out. You should train at this intensity at most a couple of times per week, as it puts your body under a lot of stress.

Exercising at 80 percent to 90 percent of your MHR will prepare your system for competitive and high-speed events. Workouts in this zone can be performed either at constant speed or as interval training (combinations of shorter training phases with intermittent breaks; see my previous article on interval training). High-intensity training develops your fitness level quickly and effectively, but overtraining might result if it’s done too often or at too high an intensity.

Common warning signs of overtraining include:

  • feeling washed-out, tired, lack of energy;
  • mild, prolonged leg soreness, general aches and pains;
  • pain in multiple muscles and joints;
  • drop in performance;
  • insomnia;
  • headaches;
  • decreased immunity;
  • decrease in training capacity/intensity;
  • moodiness and irritability;
  • depression;
  • loss of enthusiasm for the sport;
  • decreased appetite; or
  • increased incidence of injuries.

If a patient experiences these symptoms, the best prescription might be to recommend they take a break from their training program.

When your heart rate during a workout reaches 90 percent to 100 percent of the maximum, the training will feel extremely hard. Lactic acid will build up in your system much faster than can be removed, and you will be forced to stop after a few minutes. Athletes include these maximum-intensity workouts in their training program in a very controlled manner; fitness enthusiasts do not require them at all.

It’s important to note that a workout with a lower perceived exertion is not worse or less significant than a workout with a high-intensity value. Both are needed in balanced training. In fact, lower-intensity workouts are most important for endurance. Low-intensity training builds a foundation on which you can safely build workouts with a higher intensity.

Understand your body’s signals and how to react to them. Learn to recognize what the different heart rate zones feel like during your workouts and what kind of feelings different training effects cause in your body (sweating, ability to talk, muscle soreness). I encourage my patients to learn to notice when their heart rate differs from normal and how unusual situations (i.e., lack of sleep, stress, an oncoming flu) also affect their heart rates.

Using the NASM model as taught in the Corrective Exercise Specialist (CES) and Performance Enhancement Specialist (PES) courses, I implement an “Integrated Program Design” for my patients:

  1. Train them how to perform self-myofascial release using the foam roll.
  2. Train them how to perform specific stretching maneuvers.
  3. Discuss how to control heart rate, performance level and exertion during exercise. Take your heart rate and know your desired heart rate limits. Decide on a training effect target for your workout that day.
  4. Introduce training in the most sensible and result oriented way. This includes training programs that include core work, balance training, plyometrics, speed (straight-ahead speed), agility (lateral speed), quickness (reaction time) and resistance training.

Plan training wisely and with long-term vision. I don’t want my patients to go to a personal trainer for this type of information and intervention. I want to be able to design a training program with a personal trainer that matches my patient’s needs and goals. Most of my patients want to lose weight, “get in shape,” prevent osteoporosis or need to perform corrective exercises for musculoskeletal reasons. The problems I see most often in those who are working out is they have been doing the same workout without variety way too long. It’s worth saying again – help patients plan long-term.

As I work more and more closely with personal trainers, I see my role as helping each of my patients with injury prevention; maintaining a regular training schedule; an upward trend in strength, endurance, balance, etc.; a correct ratio between training and rest; variety; and keeping both of us motivated.

In part 4 of this series, I will discuss functional movement tests and corrective exercise training.

References

  1. Gellish RL, Goslin BR, Olson RE, et al. Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc, May 2007;39(5):822-9.
  2. Jouven X, Empana JP, Schwartz PJ, et al. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med, 2005 May 12;352(19):1951-8.
  3. Achten J, Jeukendrup A. Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. Int J Sports Med, January 2004;25(1):32-7.
Page 7 of 9« First...«56789»
Copyright © 2009 Dr.Jeffrey Tucker